Efficacy of Fosfomycin on Escherichia coli Isolated from Bitches with Pyometra

Ikuo INOUE1), Sanae SHIBATA2) and Tsuneo FUKATA1)*

1)The United Graduate School of Veterinary Sciences, Gifu University, 1–1 Yanagido, Gifu 501–1193, Japan
2)Department of Veterinary Sciences, Faculty of Applied Biological Sciences Gifu University, 1–1 Yanagido, Gifu 501–1193, Japan

(Received 7 November 2012/Accepted 5 December 2012/Published online in J-STAGE 19 December 2012)

ABSTRACT. The aim of this study was to determine the antimicrobial resistance of Escherichia coli isolated from the uteri of bitches with pyometra, and 38 E. coli isolates were used. The antimicrobials used were ampicillin (ABPC), amoxicillin/clavulanic acid, gentamicin, minocycline, cefazolin, levofloxacin (LVFX), trimethoprim-sulfamethoxazole (ST) and fosfomycin (FOM). Resistance to ABPC occurred most frequently, followed by LVFX and ST. Multi-drug resistance, defined as resistance against 3 or more classes of antimicrobials, was found in 23.7% of all isolates. Nine out of 13 resistant strains were multi-drug resistant, but no strain was found to be resistant to FOM. This suggests that FOM should be administered for E. coli from pyometra.

KEYWORDS: antimicrobial resistance, bitch, Escherichia coli, fosfomycin, pyometra.


Pyometra is regarded as one of the most common illnesses in bitches [10, 16, 18]. Its etiology and pathogenesis are complex and only partly understood [11, 14, 16, 17, 19]. The most common bacterium isolated in cases of pyometra is Escherichia coli (E. coli) [1, 5, 8, 11, 16]. There have been a few studies of resistance to antimicrobials among bacteria isolated from the uteri of bitches with pyometra [4, 7, 9, 15, 20]. The resistant ratio of E. coli isolated from pyometra is reported to be various, but is mostly lower than urine samples [9, 18].

Fosfomycin is a cell-wall-active antimicrobial, classified as bactericidal in action, with a broad spectrum including Gram-negative and Gram-positive organisms [3, 13]. Hubka and Boothe suggested that fosfomycin shows effective antimicrobial activity against E. coli associated with spontaneous disease in dogs and cats, including isolates expressing multi-drug resistant isolates cultured from the urinary tract [12].

The aim of this study was to determine the antimicrobial resistance of E. coli isolated from the uteri of bitches with pyometra.

Samples were taken from 38 bitches that underwent ovariohysterectomy, because of pyometra at Fukuda Animal Hospital (Osaka, Japan) between April 2009 and the end of March 2012. Each sample from a uterus suffering from pyometra was plated onto desoxycholate-hydrogen sulfide-lactose (DHL) agar (Eiken Chemical Co., Ltd., Tokyo, Japan). After incubation at 37°C for 18 hr, two to four red colonies were identified using miniaturized biochemical systems (API System; bioMerieux, Lion, France). One strain was selected from 2 to 4 colonies with the same biological properties. As a result, 38 E. coli isolates were obtained from the uterus. E. coli isolates were stored in MicroBANK (Pro-Lab Diagnostic, Richmond Hill, ON, Canada) at −80°C until further use.

Susceptibility to each of 8 antimicrobials was determined using the agar dilution method according to the guidelines of the Clinical and Laboratory Standard Institute (CLSI 2010) [2]. The antimicrobials used were ampicillin (ABPC), amoxicillin/clavulanic acid (CVA-AMPC), gentamicin (GM), minocycline (MINO), cefazolin (CEZ), levofloxacin (LVFX), trimethoprim-sulfamethoxazole (ST) and fosfomycin (FOM).

Resistance to ABPC occurred most frequently (11 isolates, 28.9%), followed by LVFX and ST (7 isolates, 18.4%) (Table 1). Multidrug resistance, defined as resistance against 3 or more classes of antimicrobials, was found in 23.7% of all isolates (Table 2). The most dominant resistant phenotype was ABPC. Resistance to 1 or more of the antimicrobials tested was observed in 13 isolates (34.2%). One strain was resistant to 7 out of 8 drugs, and 2 strains were resistant to 6 drugs. Nine out of 13 resistant strains were multi-drug resistant, but no strain was found to be resistant to FOM.

Resistance to ABPC was the most commonly observed trait among the isolates of E. coli from cases of pyometra. We supposed that ABPC is used for long time and many strain got resistant in ABPC, but FOM is not used routinely and many strain did not get resistant in FOM. Hagman and Greko indicated in Sweden that about 10% of strains were resistant to ABPC.

Table 1. Prevalence of antimicrobial resistance among 38 E. coli isolates from bitches with pyometra

<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>No. of isolates (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin</td>
<td>11 (29.9)</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>7 (18.4)</td>
</tr>
<tr>
<td>Trimethoprim-sulfamethoxazole</td>
<td>7 (18.4)</td>
</tr>
<tr>
<td>Amoxicillin/clavulanic acid</td>
<td>5 (13.2)</td>
</tr>
<tr>
<td>Minocycline</td>
<td>5 (13.2)</td>
</tr>
<tr>
<td>Cefazolin</td>
<td>5 (13.2)</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>5 (13.2)</td>
</tr>
<tr>
<td>Fosfomycin</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>
resistant to ABPC in 2002 [9], and Shimada et al. reported in Japan that no multi-drug resistant strain was isolated in 2011 [18]. But, in our results, they were 34%, and multidrug resistance was higher than the results that they reported. Therefore, it was suggested that multi-drug resistant E. coli isolates from pyometra were increased without being varying by country or time. Hubka and Boothe suggested that FOM showed effective antimicrobial activity against E. coli associated with spontaneous disease in dogs and cats, including isolates expressing multi-drug resistance cultured from the urinary tract [12]. In our study, FOM showed effective antimicrobial activity against E. coli from canine pyometra. This suggests that FOM should be administered for E. coli from canine pyometra, but this drug should not be administered to cats [6].

REFERENCES