A 39-kDa Capsular Protein is a Major Cross-Protection Factor as Demonstrated by Protection of Chickens with a Live Attenuated Pasteurella multocida Strain of P-1059

Nattawooti STHITMATEE1, 3)*, Terdsak YANO1), Kannikar Na LAMPANG1), Chaisuree SUPHAVILAI2), Yasushi KATAOKA3) and Takuo SAWADA3)

1)Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
2)Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50100, Thailand
3)Laboratory of Veterinary Microbiology, Nippon Veterinary and Life Science University, Musashino, Tokyo 180–8602, Japan

(Received 29 October 2012/Accepted 16 February 2013/Published online in J-STAGE 1 March 2013)

ABSTRACT. The aim of this study was to show that a 39-kDa protein or OmpH of strain P-1059 is essential for cross protection. Strain PBA322, a thinly capsulated strain of P. multocida strain P-1059, was used as a live vaccine in chickens. Strain PBA322 is a thinly capsulated strain in comparison with the parental strain P-1059. Chickens were vaccinated by single injection and then challenge-exposed with strains P-1059 or X-73 at two weeks post vaccination. Moreover, immune responses were also evaluated for both humoral and cellular immune response by ELISA and lymphocyte proliferation assay, respectively. The results showed that the live vaccine induced efficient immunity to protect chickens from challenge-exposure to the parent strain, but that the heterologous protection was poor. We concluded that the 39-kDa protein is essential for cross protection.

KEYWORDS: 39-kDa protein, cross protection, fowl cholera, Pasteurella multocida.

Pasteurella multocida is a gram-negative bacterium and the causative agent of fowl cholera, bovine or buffalo hemorrhagic septicemia and swine atrophic rhinitis. The bacteria can be classified into 5 capsular serogroups, A, B, D, E and F [20], and 16 somatic serotypes, 1–16 [11]. Strains of capsular serogroup A and somatic serotypes 1, 3 and 4 are known as the causative agents of fowl cholera [20–22]. The virulence factors of P. multocida including capsular protein have been demonstrated [2–5, 7–9, 11, 14, 16, 17, 19]. The bacterial capsule plays a role in adherence to epithelial cells of the host at the early stage of infection [10, 14]. The 39-kDa protein in crude capsular extract (CCE) of strain P-1059 (serovar A:3) is an adhesive protein and located in the bacterial capsule [2, 5]. N-terminal sequence analysis of this protein showed that it was identical to the major outer membrane protein H (OmpH) of strain P-1059 [6]. The mutant strain PBA322 of strain P-1059 was used as a live attenuated vaccine in this study. One single colony of strain PBA322 was inoculated in BHI broth and incubated at 37°C for 6 hr and then subcultured on dextrose starch agar (DSA; Becton, Dickinson and Co., Sparks, MD, U.S.A.) broth at 37°C for another 18 hr before being used in the experiments.

Vaccine: Strain PBA322 from strain P-1059 was used as a live attenuated vaccine in this study. One single colony of strain PBA322 was inoculated in BHI broth and incubated at 37°C until the OD600 reached 0.1. In order to enumerate the viable bacterial number, a serial tenfold dilution was performed in BHI broth before spreading on a DSA plate. Moreover, a sterile BHI broth was used as a negative control vaccines.

Chickens: A total of 40 eight-week-old P. multocida-antibody-free layers (Hi-Sex; RPM Farm & Feed Co, Ltd., Chiang Mai, Thailand) were used in this study (Table 1). Three milliliters of blood was collected from all the chickens before each vaccination or challenge-exposure in order to evaluate the immune responses by enzyme-linked immunosorbent assay (ELISA) and lymphocyte proliferation assay (LPA). The use of laboratory animals was reviewed by the animal welfare committee of the Faculty of Veterinary Medicine, Chiang Mai University. Experiments were performed in a closed system. Experiment rooms and instruments were cleaned with disinfectant for two weeks before and after the
The average antibody titer of each group was calculated as the standard mean, and the calculated values were used to compare the statistical data.

Determination of cellular immune response: An in vitro LPA was adapted and performed as described previously [13, 18]. Peripheral blood mononuclear cells (PBMCs) were prepared from three milliliters of blood by a gradient centrifugation technique [10] with Ficoll® gradient (Amersham Pharmacia Biotech, Uppsala, Sweden) and centrifuged at 400 g for 30 min. PBMC fraction was collected and washed twice with sterile RPMI tissue culture medium (RPMI1640, 31800-022, Gibco, Invitrogen, Carlsbad, CA, U.S.A.) supplemented with 100 IU/ml streptomycin and 100 IU/ml penicillin (RPMI). Subsequently, pellets were resuspended with 4 ml R10 culture medium [RPMI tissue culture medium supplemented with 100 IU/ml streptomycin, 100 IU/ml penicillin, 10% fetal calf serum (FCS, 10270-098, Gibco) and 2.5 × 10−5 M 2-mercaptoethanol], before enumerating the number of cells. PBMCs at 1 × 10^6 cells/well were stimulated in triplicate with 5.0 μg/ml (final concentration) of crude capsular antigen (CCE) from strains X-73 and P-1059 in a 96-well U-bottom microtiter plate. R10 culture medium and 10 μg/ml of ConA (Concanavalin A, C-2010, Sigma) were used as a cell control and mitogen control, respectively. Then the microtiter plate was incubated at 42°C for 48 hr in a humidified atmosphere with 5% CO2. In the last 16 hr before harvesting, cultures were pulsed with 0.25 μCi of methyl-[3H]-thymidine. Thymidine uptake was determined with a liquid scintillation counter (MicroBeta TriLux, Wallac, Finland). Results were expressed as stimulation indices (SI), calculated as SI=mean cpm in stimulated wells/mean cpm in media wells.

Protection assay: Chickens were challenge-exposed at two weeks post vaccination. Chickens of groups 1 and 2 were challenge-exposed with 4.3 × 10^4 cfu/ml of the parent strain P-1059 to determine the homologous protection, while groups 3 and 4 were challenge-exposed with 2.3 × 10^5 cfu/ml of strain X-73 to determine the heterologous protection [24]. The birds were observed for their mortality rates and clinical signs for 10 days.

Statistical analyses: Comparisons of protection in immunized chickens were made using Fisher’s exact test.
RESULTS

Experiment in chickens: Groups of chickens, vaccines and results are shown in Table 1. During ten days post challenge-exposure, all chickens of groups 2 and 4 were found dead at 12–24 hr post exposure. Necropsies were performed, and samples were collected and sent to confirm cause of death at a microbiological laboratory. The carcasses showed the typical gross lesions of fowl cholera, e.g., multiple necrotic foci in the liver and/or spleen, lung congestion and edema, multiple petechiae in liver, hemorrhage in the small intestines and splenomegaly. Chickens in the experimental groups began to show clinical signs, for example, depression and loss of appetite, at 6 to 8 hr after exposure. Then, at 12 hr after exposure, chickens started to die, and dead chickens were found until three days after the exposure. Bacterial isolation showed pure colonies on the agar plates, and biochemical reactions of the isolates showed the typical properties of *P. multocida* (data not shown).

Protection assay: Chickens in group 1 were challenge-exposed with the parent strain of the vaccine, strain P-1059, and complete protection (100% survived) was obtained. In contrast, no survivors (0%) were observed in group 3, which were challenge-exposed with strain X-73. Fisher’s exact test indicated that there was significant difference in cross-protection conferred by the live vaccine (*P*<0.05).

ELISA: The average log antibody titers of chicken antiserum against strains P-1059 and X-73 are shown in Figs. 1, 2.
The results showed that strong humoral immune responses were generated by vaccination against homologous strain P-1059 (Fig. 1), while there was no response against heterologous strain X-73 (Fig. 2). The chicken antibody titers of all the groups before vaccination against both strains were not significantly different. Antibody titers against homologous strain P-1059 were empirically elevated in the vaccinated chickens (groups 1 and 3) post vaccination, while the non-vaccinated chickens’ immune responses (groups 2 and 4) were not elevated. The increased antibody titers post vaccination against homologous strain P-1059 of the two vaccinated groups (groups 1 and 3) were not significantly different. Moreover, the antibody response of the vaccinated groups against homologous strain P-1059 were significantly different from those of the non-vaccinated groups (P<0.05). In contrast, there was no antibody response against heterologous strain X-73 in the period spanning from before vaccination right up until after vaccination (Fig. 2).

LPA: The LPA data are shown in Figs. 3, 4. The SI values for the pre-vaccination groups were not significantly different even though when stimulated with antigens of _P. multocida_ strains P-1059 or X-73. After vaccination, lymphocytes of the vaccinated chickens slightly proliferated when compared to lymphocytes of the non-vaccinated groups when stimulated with strain P-1059 (Fig. 3). The SI values of the vaccinated groups were significantly different from SI values of the non-vaccinated groups, even though when stimulated with _P. multocida_ strains P-1059 (P<0.05). In contrast, the SI values of lymphocytes stimulated with strain X-73 were not different among the vaccinated or non-vaccinated chickens (Fig. 4).
DISCUSSION

Cross protection might be affected by lack of the 39-kDa protein in the mutant PBA322. Previous investigations indicated that both native and recombinant 39-kDa proteins are cross-protective adhesive antigens of *P. multocida* capsular serogroup A strains [4, 24]. Therefore, existence of the 39-kDa protein in bacterial capsule corresponds to a bacterial cross-protective immunogen. As expected, a low level of protection was conferred by the heterologous challenge-exposure. Previous studies constructed and determined the protection conferred by mutants of *P. multocida* [12, 15]. The acapsular protection conferred by mutants of *P. multocida* exposure. Previous studies constructed and determined the protection conferred by the heterologous challenge with wild-type strain X-73 [12]. Moreover, the attenuated *aroA* mutant PMP3 conferred efficient protection against challenge with strains X-73 and P-1662 [15]. Therefore, the present protection assays indicate that the inhibition of 39-kDa protein synthesis causes a thin encapsulated strain, but the strain may lack a cross-protective characteristic.

Live noncapsulated mutants were attenuated and also proved to be efficacious live vaccine candidates for mice and natural hosts [12, 15]. Theoretically, a live vaccine activates all phases of the immune system. It elicits a humoral IgG and local IgA, raises an immune response to all protective antigens, offers more durable immunity and is more cross-reactive. In the present study, the antibody titer profiles showed low antibody response in strain X-73-coated ELISA, but in contrast, a very high response was seen in strain P-1059-coated ELISA. This correlated to the characteristic of the strain. In our previous work, strain PBA322 was constructed by inhibition of this cross-protective antigen, a cross-protective antigen among *P. multocida* capsular type A strains [23], and subsequently, a cross-protective characteristic of the strain must be deleted. Therefore, the antibody induced by vaccination with strain PBA322 reacted particularly to a homologous strain. The LPA results indicated that the lymphocytes of chickens vaccinated with the mutant were not correlated with the protection. In accordance with the LPA profiles, chicken lymphocytes showed low proliferation after vaccinations, even when cells were stimulated with homologous strain P-1059. However, the mechanism of cellular immune response to the present live attenuated strain needs to be clarified. The role of the cellular immune response in the protection is still questioned, even though the bacterium is able to multiply intracellularly.

In conclusion, the cross protection conferred by vaccination with a live vaccine, a 39-kDa protein knockout strain, was poor, and the results showed that a 39-kDa protein of *P. multocida* is essential for the cross protection. Moreover, the cross protection is mainly the result of humoral immunity even though the bacterium is able to multiply intracellularly.

ACKNOWLEDGMENTS. The authors would like to express their deep appreciation to the staff at the Research Institute for Health Sciences (RIHES), Chiang Mai University, for their laboratory assistance and also to Dr. Suwit Chotinun of the Avian Clinic, Faculty of Veterinary Medicine, Chiang Mai University, for his kind assistance. This research received a grant from the Research Administration Center, Chiang Mai University, for fiscal year 2008–2009.

REFERENCES

