Plasma 8-Isoprostane Concentrations and Adipogenic and Adipokine Gene Expression Patterns in Subcutaneous and Mesenteric Adipose Tissues of Fattening Wagyu Cattle

Tomoya YAMADA1)*, Mikito HIGUCHI1) and Naoto NAKANISHI1)

1)Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Nasushiobara, Tochigi 329–2793, Japan

(Received 8 February 2013/Accepted 16 March 2013/Published online in J-STAGE 29 March 2013)

ABSTRACT. We hypothesized that fattening Wagyu cattle fed conventional low-vitamin fattening diets are exposed to oxidative stress. In this experiment, we studied the plasma concentrations of 8-isoprostane and the fat depot-specific effects of the diet-induced adipogenic (C/EBPβ, C/EBPδ, C/EBPα and PPARγ2) and adipokine (VEGF, FGF-2, leptin and adiponectin) gene expressions in fattening Wagyu steers. Animals were fed a high-vitamin (α-tocopherol and β-carotene) diet (HV) or a control diet (CT) during the fattening period (from 10 to 30 months of age). The plasma concentrations of 8-isoprostane, a marker of oxidative stress, were significantly lower in the HV group than in the CT group. In mesenteric adipose tissue, the expressions of the adipogenic and adipokine genes in the HV group were significantly lower than those in the CT group. In contrast, there were no differences in the expression of the adipogenic and adipokine genes in subcutaneous adipose tissue between groups. These results suggest that higher intake of dietary α-tocopherol and β-carotene affects the expression patterns of adipogenic and adipokine genes in a fat depot-specific manner with the reduction of plasma 8-isoprostane concentrations.

KEY WORDS: adipocyte, adipokine, cattle.

Adipose tissue growth (adipogenesis) is dependent on cellular events concerning both the increase in the number of adipocytes (hypertrophy) and the enlargement of adipocyte size (hypertrophy). Adipogenic transcription factors, the CCAAT/enhancer-binding protein (C/EBP) family (C/EBPβ, C/EBPδ and C/EBPα) and the peroxisome proliferator-activated receptor γ2 (PPARγ2), play essential roles during adipogenesis [7, 27, 34]. Previous studies have also indicated that adipogenesis is tightly associated with angiogenesis [23, 28]. The adipocyte itself secretes many angiogenic adipokines, such as the vascular endothelial growth factor (VEGF) and the fibroblast growth factor-2 (FGF-2) [11, 20]. In addition, leptin and adiponectin, major adipokines secreted from adipocytes, are potent inducers of angiogenesis [5, 25, 31, 32].

Obesity is characterized by increased oxidative stress with chronic inflammation in adipose tissues. Obese subjects have higher levels of oxidative stress biomarkers, such as 8-isoprostane, than their leaner counterparts. 8-isoprostane is an eicosanoid produced by the random oxidation of lipids by oxygen radicals, and its plasma levels accurately reflect the oxidative stress status in obese patients [2, 35, 36]. On the other hand, previous reports have indicated that dietary supplementation with α-tocopherol, the most potent antioxidant component among vitamin E, reduced oxidative stress with the reduction of plasma 8-isoprostane concentrations in obese patients [17, 37, 38]. In addition, a lower dietary intake of α-tocopherol and β-carotene in humans increases the oxidative stress status [13]. Previous studies have also indicated that plasma levels of 8-isoprostane are significantly correlated with visceral fat area rather than subcutaneous one [2, 35]. Ito et al. [15] reported that the C/EBPβ up-regulates the expression of inflammatory mediator adipokines, such as MCP-1 and IL-6. Leptin induces oxidative stress by leading to an enhanced intracellular accumulation of reactive oxygen species [3], and the serum leptin concentration has a positive relationship with oxidative stress levels [21]. These results suggest that a higher dietary intake of α-tocopherol and β-carotene reduces oxidative stress via down-regulation of adipogenic and adipokine genes mainly in mesenteric adipose tissue. However, the effects of the dietary α-tocopherol and β-carotene levels on the expression of the adipogenic and adipokine genes in adipose tissues, including humans and rodents, are still unclear. In addition, although feedlot cattle are thought to be in a state of obesity, little is known about the status of oxidative stress in fattening ruminants. In this experiment, we studied the effects of the dietary α-tocopherol and β-carotene levels on the concentrations of plasma 8-isoprostane and the expression of adipogenic (C/EBPβ, C/EBPδ, C/EBPα and PPARγ2) and adipokine (VEGF, FGF-2, leptin and adiponectin) genes in the adipose tissue of fattening Wagyu steers.

MATERIALS AND METHODS

Animals: The experimental design has been described in detail by Yamada et al. [40]. In brief, eight Wagyu steers...
aged 10 months were allotted by body weight to two groups. (1) The control group (CT, n=4) farmed under conventional feeding system: fed concentrate (88% total digestible nutrients (TDN), 0.1 mg/kg β-carotene and 2 mg/kg α-tocopherol) and orchard grass hay (56% TDN, 0.5 mg/kg β-carotene and 3 mg/kg α-tocopherol) during the experimental periods (fed from 10 to 30 months). The control group was fed diet consisting of about 10% roughage and 90% concentrate (on a TDN basis). (2) The high-vitamin diet group (HV, n=4) fed α-tocopherol and β-carotene rich total mixed rations (TMR) consisting of 72% TDN, 16 mg/kg β-carotene and 60 mg/kg α-tocopherol (fed from 10 to 20 months), and 77% TDN, 7 mg/kg β-carotene and 22 mg/kg α-tocopherol (fed from 21 to 30 months). Dietary vitamin concentrations were measured as described previously [26]. Feeds were individually provided in each group. The steers were pair-fed in order to eliminate the influence of the total TDN intake between groups. At 30 months of age, the steers were slaughtered by captive bolt stunning and exsanguinations after 48 hr fasting, and the subcutaneous and mesenteric adipose tissues were sampled. The subcutaneous adipose tissue was collected near the 3rd and 4th lumbar vertebrae. The mesenteric adipose tissue was sampled from the area surrounding the colon. All adipose tissue samples were collected immediately after slaughter, and samples were stored at −80°C in the RNA-later reagent (Ambion, CA, U.S.A.) until RNA extraction. After slaughter, the left side of the carcass was chilled for 72 hr at 4°C and physically separated into muscle, bone and fat to measure the tissue weight. All animals received humane care as outlined in the Guide for the Care and Use of Experimental Animals (Institute of Livestock and Grassland Science).

Plasma 8-isoprostane analysis: Three days before slaughter, blood samples were collected from the jugular vein. Plasma was separated by centrifugation and stored at −80°C until analysis. The plasma levels of free 8-isoprostane were measured using an ELISA kit (Cayman Chemical, Ann Arbor, MI, U.S.A.) according to the manufacturer’s protocol.

RNA isolation and real-time PCR: Adipogenic and adipokine gene expressions were analyzed by real-time PCR as described previously [39, 41]. In brief, total RNA was extracted from adipose tissue using the RiboPure kit (Ambion, CA, U.S.A.) according to the manufacturer’s instructions. The first-strand cDNA was reverse-transcribed from 0.5 µg total RNA using the ReverTra Ace qPCR RT kit (Toyobo, Osaka, Japan) according to the manufacturer’s protocol. Real-time PCR was performed with a Mini Opticon (Bio-Rad, Munich, Germany) using THUNDERBIRD SYBR qPCR Mix (Toyobo) according to the manufacturer’s instructions. The primer sequences were as follows: C/EBPβ, 5′-ACA GGG ACG AGT ACA AGA TCC-3′ (forward) and 5′-GAC AGT TGC TCC ACC TTC TTT TCA-3′ (reverse); C/EBPδ, 5′-ATG GCC TAC TTC AT-3′ (forward) and 5′-GTT GCT TGG CGT TTG AA-3′ (reverse); CETP, 5′-CGG TGG TCC TCA ATG TTG GGG-3′ (forward) and 5′-AGG CCA ACC TCA-3′ (reverse); VEGF, 5′-GAA CTT TCT GTC TTC TTG GGG-3′ (forward) and 5′-CTG GCT TTG AGG TTT GA-3′ (reverse); FGF-2, 5′-ACC GGT CAA GGA AAT ACT CCA G-3′ (forward) and 5′-CAG GTC TGG TTT TGG GTCA CTG C-3′ (reverse); leptin, 5′-GAA GAA GGT CCC GGA GGT TCT-3′ (forward) and 5′-GGA CCA GAC ATT GGC GAT CT-3′ (reverse); adiponectin, 5′-CAT AAT GGG GTC TAT GCA GAT-3′ (forward) and 5′-AGT ATG TAG AGA AGG AAG CCT GTT-3′ (reverse); ribosomal protein large P0 (RPLP0), 5′-CCA CCC TGA AGT GCT TGA CAT-3′ (forward) and 5′-AGG CAG ATG GAT CAG CCA CCA-3′ (reverse). The reaction conditions were designed as follows: initial denaturation at 95°C for 60 sec followed by 40 cycles at 95°C for 15 sec, 55°C for 15 sec and 70°C for 30 sec. SYBR green fluorescence was detected at the end of each cycle to monitor the amount of the real-time PCR product formed during that cycle. The specificity of the PCR products was determined by melting curve analysis at the end of each run. The standard curve of each product followed the calculation of respective gene expressions. The expression levels of adipogenic and adipokine mRNA were normalized by RPLP0 as an internal control [39, 41]. The expression in the HV group in each adipose tissue was set to one, and the expression in the control group was expressed as the value relative to that in the HV group.

Adipocyte cellularity: Adipocyte cellularity was measured as described previously [41]. In brief, the samples of adipose tissue were rinsed in 0.154 M NaCl and then fixed with 50 mM collidine-HCl buffer (pH 7.4) containing 2% osmium tetroxide. After fixation, the samples were rinsed in 0.154 M NaCl for 24 hr at room temperature. Fixed adipose tissue samples were then placed into 8 M urea in 0.154 M NaCl for 48 hr at room temperature. Fixed and urea-isolated adipocytes were separated into 0.01% Triton X-100 in a 0.154 M NaCl buffer (pH 10). The adipocyte diameter was measured using WinRoof software (Mitani Corporation, Fukui, Japan). Over 300 adipocytes for each sample were measured.

Statistical analysis: All results are presented as the means ± SD. The differences in mean values between the groups were analyzed by Student’s t-test using the StatView Version 5 program (SAS Institute, Inc., Cary, NC, U.S.A.).

RESULTS

Carcass data: The growth performance and feed intake of Wagyu steers have been described in earlier reports [40]. Briefly, there were no significant differences in the final body weight, daily gain and total TDN intakes between groups. Table 1 shows the carcass composition and regional variation of adipose tissue in Wagyu steers between groups. There were no significant differences in the weights of carcass composition (bone and lean) and distribution of adipose tissues (subcutaneous and mesenteric) between groups.

Plasma 8-isoprostane concentrations: The plasma 8-isoprostane concentrations are shown in Fig. 1. The plasma 8-isoprostane concentrations in the HV group were significantly lower than those in the CT group.

Adipogenic and adipokine gene expression and adipocyte cellularity: In subcutaneous adipose tissue, there were no
differences in the adipogenic (C/EBPβ, C/EBPδ, C/EBPα and PPARγ2) and adipokine (VEGF, FGF-2, leptin and adiponectin) gene expression levels between groups (Fig. 2A and 2B). In the photomicrographs of osmium-fixed subcutaneous adipocytes, larger sizes of cells were more abundant in the HV group than in the CT group (Fig. 2C and 2D). Compared to the CT group, the subcutaneous adipocyte size distribution in the HV group shifted toward larger diameters (Fig. 2E). The mean diameter of subcutaneous adipocytes in the HV group was significantly larger than that in the CT group (Fig. 2F).

In mesenteric adipose tissue, the gene expression of C/EBPβ, C/EBPδ and C/EBPα in the HV group was significantly lower than that in the CT group (Fig. 3A). The gene expression of adipokine gene (VEGF, FGF-2, leptin and adiponectin) in the HV group was significantly lower than that in the CT group (Fig. 3B). The mean diameter of mesenteric adipocytes in the HV group was significantly larger than that in the CT group (Fig. 3C–F).

DISCUSSION

The present results showed that plasma 8-isoprostane concentrations in the CT group were significantly higher than those in the HV group. Obese patients exhibit significantly higher risk of oxidative stress with an increase of plasma 8-isoprostane levels [2, 35, 36]. In addition, a lower dietary intake of fruit and vegetables in humans increases the oxidative stress status by the reduction of α-tocopherol and β-carotene ingestion [13]. Feedlot cattle are generally fed a lower percentage of roughage and a higher percentage of concentrate diets. Wagyu cattle are characterized by the ability to accumulate a high amount of adipose tissue [18] and are conventionally fed a low-β-carotene diet to improve the marbling scores [24]. Irie et al. [14] reported that the concentration of α-tocopherol and β-carotene in conventional fattening diet is low, and Wagyu cattle farmed under conventional feeding system have a low carcass-tissue-α-tocopherol level. Our previous report also showed that the plasma and tissue concentration of α-tocopherol in the CT group was significantly lower than that in the HV group [40]. These results suggest that beef cattle that have a higher level of body fat, especially Wagyu receiving low-vitamin conventional fattening diets, are exposed to oxidative stress. These results also indicated that higher intake of dietary α-tocopherol and β-carotene reduced oxidative stress both in obese humans and fattening ruminants.

In this study, we showed that there were no significant differences in the weights of subcutaneous and mesenteric adipose tissues between groups. We also showed that, although there were no differences in the expression of the adipogenic and adipokine genes in subcutaneous adipose tissues between groups, the expressions of the adipogenic (C/EBPβ, C/EBPδ and C/EBPα) and adipokine (VEGF, FGF-2, leptin and adiponectin) genes in the mesenteric adipose tissue of the HV group were significantly lower than those in the CT group. The present results indicated that the dietary conditions affect the expression pattern of adipogenic and adipokine genes in a fat depot-specific manner without affecting adipose tissue weight.

Interestingly, in the present study, we found that the mean diameter of subcutaneous and mesenteric adipocytes in the HV group was significantly larger than that in the CT group. The frequency of adipocyte death is positively correlated with increased adipocyte size in obese mice and humans [6]. Alkhouri et al. [1] also showed that the diet-induced hypertrophic adipocytes of obese mice are under apoptotic pressure, and the rates of adipocyte death increase dramatically in obesity. In contrast, previous studies showed that the administration of α-tocopherol prevents oxidant-induced apoptosis [19, 30, 33]. This raises the possibility that the observed increase in subcutaneous and mesenteric adipocyte sizes in the HV group could be affected by the suppression of apoptosis in hypertrophic adipocytes, which is a result of the reduction of oxidative stress by the intake of a high-α-tocopherol diet. Further studies are needed to clarify the effects of dietary conditions on the adipocyte cellularity in bovine adipogenesis.

Obesity is associated with a low-grade chronic inflammation of adipose tissues. Ito et al. [15] reported that the C/EBP family up-regulates the expression of inflammatory mediator adipokines. The expression of leptin and adiponectin after stimulation by nutrients markedly increased in visceral adipose tissue compared with subcutaneous adipose tissue [8]. Kawada et al. [16] reported that the administration of a higher level of α-tocopherol inhibits the differentiation of

Table 1. Carcass data of Wagyu steers

<table>
<thead>
<tr>
<th>Carcass composition</th>
<th>CT</th>
<th>HV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone (kg) a)</td>
<td>26.8 ± 0.4</td>
<td>28.4 ± 1.7</td>
</tr>
<tr>
<td>Lean (kg) a)</td>
<td>117.0 ± 10.8</td>
<td>114.2 ± 6.9</td>
</tr>
<tr>
<td>Subcutaneous (kg) a)</td>
<td>28.0 ± 8.1</td>
<td>27.7 ± 9.7</td>
</tr>
<tr>
<td>Mesenteric (kg)</td>
<td>23.6 ± 5.5</td>
<td>29.3 ± 5.2</td>
</tr>
</tbody>
</table>

Values are expressed as Mean ± SD. Control diet group (CT, n=4), High-vitamin diet group (HV, n=4). a) The data from the left side of the carcass.

Fig. 1. Plasma levels of 8-isoprostane in Wagyu fattening steers aged 30 months fed a control (CT) or a high-vitamin (HV) diet during the entire fattening period (from 10 to 30 months of age). The data represent the means ± SD. *P<0.05.
T. YAMADA, M. HIGUCHI AND N. NAKANISHI

3T3-L1 preadipocytes. In addition, dietary supplementation of α-tocopherol significantly decreased the VEGF expression in mice [22]. The present study indicated that a higher intake of dietary α-tocopherol reduces the expressions of the adipogenic (C/EBPβ, C/EBPδ and C/EBPα) and adipokine (VEGF, FGF-2, leptin and adiponectin) genes in mesenteric adipose tissue with the reduction of plasma 8-isoprostane levels. Studies on the regional differences of adipose tissue showed that visceral adipose tissue, when compared to subcutaneous adipose tissue, plays a key role in elevating the risk of metabolic syndrome with increased inflammation in humans [10, 12, 29]. The expression of inflammatory mediator adipokines in visceral adipose tissue is higher than that in subcutaneous adipose tissue [4, 9]. In addition, oxidative stress is strongly associated with visceral adiposity rather than subcutaneous one [2, 35]. These results suggest

Fig. 2. Adipogenic (C/EBPβ, C/EBPδ, C/EBPα and PPARγ2) and adipokine (VEGF, FGF-2, leptin and adiponectin) gene expression and adipocyte cellularity in subcutaneous adipose tissue of Wagyu steers fed a control (CT) or a high-vitamin (HV) diet during the entire fattening period (from 10 to 30 months of age). A), B) Expression of A) adipogenic and B) angiogenic mRNA in subcutaneous adipose tissue. RPLP0 mRNA was used as an internal control. C), D) Osmium tetroxide-fixed adipocytes from subcutaneous adipose tissue in the C) control (CT) and D) high-vitamin (HV) group. The white scale bar indicates 300 µm. E) Distributions of the diameters of subcutaneous adipocytes. F) Mean adipocyte diameter of subcutaneous adipose tissue. The data represent the means ± SD. *P<0.05.
that a reduction of oxidative stress by the dietary intake of α-tocopherol and β-carotene might be affected by the down-regulation of adipogenic and adipokine genes in mesenteric adipose tissue.

In conclusion, we showed that a higher intake of dietary α-tocopherol and β-carotene reduces the plasma concentrations of 8-isoprostane and down-regulates the expressions of the adipogenic and adipokine genes in mesenteric adipose tissue. In contrast, there were no differences in the expression of the adipogenic and adipokine genes in subcutaneous adipose tissue between groups. These results suggest that a higher intake of dietary α-tocopherol and β-carotene affects the expression patterns of adipogenic and adipokine genes in a fat depot-specific manner with the reduction of plasma 8-isoprostane concentrations.

ACKNOWLEDGMENT. This work was supported in part by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (No.24580399).
REFERENCES

