Journal of Veterinary Medical Science
Online ISSN : 1347-7439
Print ISSN : 0916-7250
ISSN-L : 0916-7250
Virology
Role of the C-Terminal Region of Vervet Monkey Polyomavirus 1 VP1 in Virion Formation
Hiroki YAMAGUCHIShintaro KOBAYASHIJunki MARUYAMAMichihito SASAKIAyato TAKADATakashi KIMURAHirofumi SAWAYasuko ORBA
著者情報
ジャーナル フリー

2014 年 76 巻 5 号 p. 637-644

詳細
抄録

Recently, we detected novel vervet monkey polyomavirus 1 (VmPyV) in a vervet monkey. Among amino acid sequences of major capsid protein VP1s of other polyomaviruses, VmPyV VP1 is the longest with additional amino acid residues in the C-terminal region. To examine the role of VmPyV VP1 in virion formation, we generated virus-like particles (VLPs) of VmPyV VP1, because VLP is a useful tool for the investigation of the morphological characters of polyomavirus virions. After the full-length VmPyV VP1 was subcloned into a mammalian expression plasmid, the plasmid was transfected into human embryonic kidney 293T (HEK293T) cells. Thereafter, VmPyV VLPs were purified from the cell lysates of the transfected cells via sucrose gradient sedimentation. Electron microscopic analyses revealed that VmPyV VP1 forms VLPs with a diameter of approximately 50 nm that are exclusively localized in cell nuclei. Furthermore, we generated VLPs consisting of the deletion mutant VmPyV VP1 (ΔC VP1) lacking the C-terminal 116 amino acid residues and compared its VLP formation efficiency and morphology to those of VLPs from wild-type VmPyV VP1 (WT VP1). WT and ΔC VP1 VLPs were similar in size, but the number of ΔC VP1 VLPs was much lower than that of WT VP1 VLPs in VP1-expressing HEK293T cells. These results suggest that the length of VP1 is unrelated to virion morphology; however, the C-terminal region of VmPyV VP1 affects the efficiency of its VLP formation.

著者関連情報

この記事はクリエイティブ・コモンズ [表示 - 非営利 - 改変禁止 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
前の記事 次の記事
feedback
Top