High prevalence of caprine arthritis encephalitis virus (CAEV) in Taiwan revealed by large-scale serological survey

Wei-Cheng YANG1)#, Hui-Yu CHEN2)#, Chi-Young WANG3), Hung-Yu PAN4), Cheng-Wei WU1), Yun-Hsiu HSU1), Jui-Chuan SU5) and Kun-Wei CHAN1)*

1) Department of Veterinary Medicine, National Chiayi University, Chiayi, Taiwan
2) Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
3) Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
4) Department of Applied Mathematics, National Chiayi University, Chiayi, Taiwan
5) Goat Farmer Association of Republic of China, Taiwan

ABSTRACT. In this study, a large-scale serological survey of caprine arthritis encephalitis virus (CAEV) infection was conducted between March 2011 and October 2012. 3,437 goat blood or milk samples were collected from 65 goat farms throughout Taiwan. A commercial ELISA kit was used to detect antibodies against CAEV. The overall seropositive rate was 61.7% (2,120/3,437) in goats and in 98.5% (64/65) of goat farms. These results provide the first large-scale serological evidence for the presence of CAEV infection, indicating that the disease is widespread in Taiwan.

KEY WORDS: caprine encephalitis virus, goat, serological survey, Taiwan
seroprevalence among the goat farms in Taiwan (98.5%, 64/65). Among the 65 farms that were chosen nationwide in our study, only one goat farm in Tainan tested negative for CAEV. All other farms tested positive for CAEV, with the northern, central, southern and eastern regions in Taiwan, being 90.7% (136/150), 81.7% (892/1,092), 49.7% (1,028/2,068) and 50.4% (64/127), respectively. The highest prevalence rate was found in Miaoli (91.7%, 110/120 goats) (Table 1) (Fig.1).

We then analyzed the CAEV prevalence rates among the different types of goat farms, and we found that the goats from dairy farms showed a higher CAEV positive rate (82.0%, 1,669/2,035) than the goats from meat farms (35.1%, 399/1,138) or breeding farms (19.7%, 52/264) (Table 2), although the statistical analysis does not reveal a significant difference (Table 3).

We have noticed that the CAEV positive rate of dairy goat farms is higher than meat goat farms or breeding goat farms. The cause of this problem stems from issues in the nursing management. Nearly all the commercial dairy goat farms in Taiwan use incompletely pasteurized bulk milk to feed their lambs, whereas for meat goats, whose lambs are fed right from their mother. The former feeding strategy used in dairy goat farm may accelerate the spreading of diseases [13, 14]. Previous studies have suggested that the longer lifespan of dairy goats combined with their close proximity to each other may cause this high CAEV prevalence rate in dairy goat farms [1, 15]. Meat goats in Taiwan are often sold and slaughtered from twelve to fifteen months of age, so CAEV would be effectively eliminated from the farm due to total turnover of new meat goats. The lower infection rates in breeding goat farms are likely due to strict security measures and compliance towards CAEV monitoring and control programs, since these two

Table 1. Distribution of CAEV antibody positive goats in the regions of Taiwan

<table>
<thead>
<tr>
<th>Region of Taiwan</th>
<th>County</th>
<th>Total tested samples</th>
<th>Seropositive samples</th>
<th>CAEV positive rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern</td>
<td>Hsinchu</td>
<td>30</td>
<td>26</td>
<td>86.7</td>
</tr>
<tr>
<td></td>
<td>Miaoli</td>
<td>120</td>
<td>110</td>
<td>91.7</td>
</tr>
<tr>
<td>Central</td>
<td>Changhua</td>
<td>507</td>
<td>392</td>
<td>77.3</td>
</tr>
<tr>
<td></td>
<td>Nantou</td>
<td>536</td>
<td>456</td>
<td>85.1</td>
</tr>
<tr>
<td></td>
<td>Yunlin</td>
<td>49</td>
<td>44</td>
<td>89.8</td>
</tr>
<tr>
<td>Southern</td>
<td>Chiayi</td>
<td>787</td>
<td>666</td>
<td>84.6</td>
</tr>
<tr>
<td></td>
<td>Tainan</td>
<td>870</td>
<td>205</td>
<td>23.6</td>
</tr>
<tr>
<td></td>
<td>Kaohsiung</td>
<td>84</td>
<td>50</td>
<td>59.5</td>
</tr>
<tr>
<td></td>
<td>Pingtung</td>
<td>327</td>
<td>107</td>
<td>32.7</td>
</tr>
<tr>
<td>Eastern</td>
<td>Yilan</td>
<td>30</td>
<td>27</td>
<td>90.0</td>
</tr>
<tr>
<td></td>
<td>Hualien</td>
<td>97</td>
<td>37</td>
<td>38.1</td>
</tr>
</tbody>
</table>

Fig. 1. Geographic distribution of seropositive goats for anti-CAEV antibodies in Taiwan, 2011–2012 (n=3,437). Almost all the goats from each county in Taiwan we tested were seropositive for anti-CAEV antibodies. The seropositive rates ranged from 49.7 to 90.7% among four regions of Taiwan.
Our study is the first large-scale serological survey of CAEV in Taiwan. Based on our findings, CAEV is widespread in Taiwan, as 61.7% (2,120/3,437) of goats from 98.5% (64/65) of tested farms in Taiwan tested positive for CAEV. CAEV is widespread around the world. Serological surveys have shown that the prevalence rates of total population were 31%, 42%, 8.2% and 5.1% in U.S.A. [4], Switzerland [9], Brazil [2] and Sultanate of Oman [21], respectively. Besides, very high herd seropositivity for CAEV has been reported in the U.S.A. (73%) [4], Australia (82%) [5] and Brazil (35%) [2]. Among the neighboring countries of Taiwan, the seroprevalence of CAEV was 10% in a total of 857 goat serum samples in Japan [7], compared to only 2.73% of goats in South Korea [14]. In China, the CAEV seropositive rates varied from 0.2 to 30% [16]. The seroprevalence of CAEV in Taiwan is much higher than the neighboring areas, such as Japan, China and Korea. Worth noting is that most of the frozen semen imported into Taiwan is from France and that most goats are imported from New Zealand. Both France and New Zealand are not CAEV-free. Although the seroprevalence of the disease in New Zealand is low [17, 18, 20], France is higher than 65% [11]. The quarantine requirements in Taiwan, however, do not require a CAEV-free certification when importing goats and goat products. From the results we observed, there are some areas for improvement in our quarantine policy for CAEV disease management.

Neither effective treatment nor vaccine against CAEV has been available until now, and preventing infection is the best strategy to halt the spread of this virus [17, 22]. To minimize the risk of CAEV infection in the future, the owner of the sole CAEV negative farm that we identified in Tainan has thoroughly followed the infection control protocol provided by the Council of Agriculture, Executive Yuan, R.O.C. Our disease control and eradication program is composed of three procedures. The first procedure is neonate isolation; the newborn kids will be removed from their dams right after birth, to minimize the vertical transmission. Furthermore, neonates will be artificially fed with heat-treated colostrum (56°C, an hour) to avoid lactogenic transmission [8, 13, 19]. The second procedure is segregation of infected animals; goats over three months old will be periodically tested for CAEV every three to six months. Upon diagnosis, all CAEV seropositive goats will be segregated from the CAEV negative goats, and culling is suggested if the infected goats show signs of CAEV [3, 8, 17, 19]. As for biosecurity measures, feeding and farm cleaning should begin from the stables housing CAEV negative goats, followed by CAEV positive stables. The last procedure is selection of imported animal; goats and semen samples must be obtained from certified CAEV-free goat farms. Several studies have identified that both live animal trading and artificial insemination expedite the spread of CAEV [15, 17, 22]. World Organization for Animal Health (OIE) has provided the following recommendations for importing goat from other countries: (1) the goats should show no clinical signs of CAEV on the day of shipment; (2) goats over a year old should be tested negative for CAEV, 30 days prior to shipment, or (3) CAEV must be neither clinically nor serologically diagnosed at the origin of the goat flocks during the past three years, and importing goats from a flock of CAEV-infected or of unknown health status are prohibited during this three year period (OIE, http://www.oie.int).

In conclusion, the high occurrence of CAEV seropositivity in Taiwan indicates an urgent need to implement a CAEV control and eradication program in goat farms nationwide. In addition, further studies are needed to determine the economic impact on the goat industries. Moreover, to ascertain the epidemic status of CAEV in Taiwan, routine monitoring should be carried out for CAEV prevention and diagnosis.

ACKNOWLEDGMENTS. The authors wish to thank the Goat Farmer Association R.O.C. for providing goat samples. The study was financially supported by Council of Agriculture, Executive Yuan, R.O.C.
REFERENCES


