Prophylactic Activity of Ivermectin against *Dirofilaria immitis* Infection in Dogs: Larvicidal Activity of Ivermectin against *D. immitis* Larvae 30 Days after Infection

Isamu OHISHI, Hiromi KATAE	extsuperscript{1),} Mineo HAYASAKI, and Yusuke TADA	extsuperscript{2)}

Department of Veterinary Internal Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183, 	extsuperscript{1)Ritto Experimental Farm, Veterinary Division, Dainippon Pharmaceutical Co., Ltd. 91 Higashizaka, Ritto-cho, Kurita-gun, Shiga 520-30, and} \textsuperscript{2)MSD Japan Co., Ltd. 1-9-20 Akasaka, Minato-ku, Tokyo 107, Japan

(Received 16 September 1986/Accepted 20 November 1986)

Abstract. Larvicidal activity of ivermectin against *Dirofilaria immitis* larvae of 30 days old was evaluated. A single oral dose of ivermectin to demonstrate complete larvicidal activity was 3 µg/kg of body weight or more. Administrations of ivermectin at 0.5, 1 and 2 µg/kg dose-relatedly showed incomplete antilarval activities. Administration of ivermectin at 0.5, 1 and 2 µg/kg 30 days after infection caused lower levels of the sex ratios (female/male) than that of the control showing definite decrease in numbers of female worms. The average body lengths of both female and male worms recovered from dogs receiving ivermectin at 0.5, 1 and 2 µg/kg, except for that of female worms at 1 µg/kg, were significantly shorter than that of the worms recovered from the control dogs.---KEY WORDS: *Dirofilaria immitis*, dog, ivermectin, larvicidal activity.

The avermectins are antiparasitic agents which are macrolcytic lactones produced by *Streptomyces avermitilis*, and a complex of eight chemically related components [5, 16]. Of these, avermectin B\textsubscript{1a} was found to exhibit high potent anthelmintic activity [12]. After further studies, 22,23-dihydroavermectin B\textsubscript{1} was selected from a series of avermectin B\textsubscript{1} component derivatives as a more effective compound on the basis of its wider antiparasitic efficacy and its better safety profile [10]. Ivermectin contains no less than 80% of 22,23-dihydroavermectin B\textsubscript{1a} and no more than 20% of 22,23-dihydroavermectin B\textsubscript{1b} [11]. Ivermectin is known as an extraordinarily potent anthelmintic agent; it shows superior, wide antiparasitic activity against many nematodes in various animals, and furthermore against many arthropods [6, 9].

Potency of the avermectins against *Dirofilaria immitis* was first reported by Egerton (1976) [8]; oral treatment of a crude concentrate derived from *S. avermitilis* was followed by suppression of microfilariaemia. Through the succeeding studies, it is shown that ivermectin has superior efficacy against microfilariae and larvae but not against adult worms [6, 7, 9]. Larvicidal activity of the ivermectin was first suggested by Campbell and Blair (1978) [7] with avermectin B\textsubscript{1a}. Since then, the efficacy was also shown with basic studies in dogs and ferrets [1-4, 10, 15], and semifield trials conducted under naturally infectious conditions with *D. immitis* in dogs [14]. The results obtained from the above studies suggest that monthly oral administration of ivermectin may prevent dogs from the natural acquisition of *D. immitis* infection. Since the results are not well enough to determine the minimum dose level and treatment schedule with ivermectin in preventing *D. immitis* infection, a further study is seemed to be justified. This study was undertaken to determine the minimum oral dose required
Table 1. Larvicidal effects of ivermectin against the developing stage of *Dirofilaria immitis* in dogs administered at 30 days postinoculation

<table>
<thead>
<tr>
<th>Group</th>
<th>No. dogs</th>
<th>Inoculum sizes</th>
<th>Days after inoculation</th>
<th>No. worms recovered</th>
<th>% recovery Min.−Max.</th>
<th>Mean±SE</th>
<th>% efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (Placebo)</td>
<td>5</td>
<td>106</td>
<td>151</td>
<td>57.8</td>
<td>3.0−95.1</td>
<td>54.7±15.44</td>
<td>—</td>
</tr>
<tr>
<td>0.5 µg/kg</td>
<td>4</td>
<td>111</td>
<td>152</td>
<td>32.0</td>
<td>0−45.7</td>
<td>29.2±10.11</td>
<td>46.6</td>
</tr>
<tr>
<td>1.0 µg/kg</td>
<td>3</td>
<td>110</td>
<td>153</td>
<td>15.7</td>
<td>5.8−25.7</td>
<td>14.1±5.97</td>
<td>74.2</td>
</tr>
<tr>
<td>2.0 µg/kg</td>
<td>5</td>
<td>108</td>
<td>151</td>
<td>14.2</td>
<td>6.9−25.7</td>
<td>13.4±3.32</td>
<td>75.5</td>
</tr>
<tr>
<td>3.0 µg/kg</td>
<td>5</td>
<td>110</td>
<td>151</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>5.0 µg/kg</td>
<td>5</td>
<td>111</td>
<td>151</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

a) No significant difference from the control at P>0.05 by t-test.

to prevent worm infection in dogs experimentally infected with *D. immitis*.

MATERIALS AND METHODS

Twenty seven mongrel dogs, three to 6 months (average 4.3 months) old non-infected dogs with *D. immitis* were used in this study. ivermectin was orally administered at doses of 0.5, 1, 2, 3 and 5 µg/kg to groups of 4, 3, 5, 5 and 5 dogs, respectively. Additional group of 5 dogs served as a control. Control and 1 µg/kg groups consisted of females only, and other groups included one male each. During the study, the dogs were kept in a mosquito-proof house to prevent from natural infection of *D. immitis*. They were fed once a day with commercial dog food.

The dogs were subcutaneously inoculated in the back with 101 to 120 infective larvae of *D. immitis* per dog, an average of 106 to 111 larvae per group. The larvae were freshly harvested from experimentally infected *Aedes togoi*. A single oral administration of ivermectin was made at 30 days after inoculation. Tablets containing 23 µg of ivermectin per each were pulverized and placed in gelatin capsules to give the prescribed dose of ivermectin to each dog in medicated groups. Placebo tablets at 9.67 mg/kg which was equivalent to tablet weight of 3 µg of ivermectin were given to control dogs in a similar manner. Body weights at the administration of the drug ranged from 2.4 to 9.7 kg; average body weights of the groups, except for 3.6 kg of 0.5 µg/kg group, ranged from 5.9 to 6.5 kg. Larvicidal activity of ivermectin was evaluated in each dog at necropsy on day 150 to 153, average day 151 to 153 for each group when the infected larvae completely migrated to the right ventricle. The dogs were euthanized with sodium pentobarbital. Immediately, the right ventricle and pulmonary arteries were dissected and examined for the worms. The worms in the thoracic and abdominal cavities were also examined.

RESULTS

Table 1 shows numbers of immature worms recovered from the right ventricle and pulmonary arteries of the dogs at necropsy. The worms were found in dogs of the control and treated with ivermectin at 0.5, 1 and 2 µg/kg. No worms were found in dogs treated with ivermectin at 3 and 5 µg/kg. The infection ratios, percentages of worm recovered for larvae inoculated, in individual control dogs ranged from 3.0 to 95.1%, and averaged 54.7%. The ratios in individual dogs given ivermectin at 0.5 µg/
kg ranged from 0 to 45.7%, and averaged 29.2%. The ratios at 1 µg/kg ranged from 5.8 to 25.7%, and averaged 14.1%, and at 2 µg/kg ranged from 6.9 to 25.7%, and averaged 13.4%. The infection ratios in the treated groups dose-relatedly decreased, but no statistical difference was found between the treated groups and the control. The infection ratios at 3 and 5 µg/kg showed 0% with no worms found. This indicated that there was a dose-related increase in efficacy of ivermectin against larvae, and its complete efficacy was found in the treated group at 3 µg/kg or more. No ectopic parasitism of worms was observed in the abdominal and thoracic cavities of the treated and control dogs.

Table 2 shows the sex ratios (female/male) of immature worms recovered from the control dogs, and dogs treated with ivermectin at 0.5, 1 and 2 µg/kg. The sex ratio in the control group was 1.61. The sex ratios in the treated groups ranged from 1.12 to 0.21, and the ratio decreased as the dose increased. A statistically significant difference was found between the groups receiving ivermectin at 1 and 2 µg/kg and the control group, and the numbers of the female worms recovered from the treated groups were lower than the male worms. The average body lengths of worms recovered from the control and treated groups were shown in Table 2. Those of the male worms recovered from the groups given ivermectin at 0.5, 1 and 2 µg/kg were shorter than the control at 9.7 to 16.2% levels and those of female worms recovered from the treated were also shorter than the control at 8.2 to 27.8% levels. Except for the average body length of female worms treated at 1 µg/kg, those of both the male and female worms recovered from the treated groups were significantly shorter than the control. However, no dose-relations in the average body lengths were found in the treated groups. No adverse reactions associated with administration of ivermectin were observed.

DISCUSSION

Campbell and Blair (1978) [7], and other workers [1–4, 10, 15] conducted basic studies with experimental infection of *D. immitis* in dogs and ferrets to evaluate efficacy of ivermectin against developing stages of the larvae. The studies were conducted to evaluate the efficacy of ivermectin against
Table 3. Efficacy of ivermectin against the developing stages of *Dirofilaria immitis* in the dog

<table>
<thead>
<tr>
<th>Developing stage</th>
<th>Dose of ivermectin (μg/kg B.W.)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>12.5</td>
</tr>
<tr>
<td>One-day old (L₃)</td>
<td>Single, oral</td>
<td>○³)</td>
</tr>
<tr>
<td>One-month old (L₄)</td>
<td>Single, oral</td>
<td>○</td>
</tr>
<tr>
<td>Two-months old (L₄ or early L₅)</td>
<td>5 days, oral</td>
<td>○</td>
</tr>
<tr>
<td>Three-months old (L₅)</td>
<td>Single, oral</td>
<td>△</td>
</tr>
</tbody>
</table>

a) Complete efficacy.
b) Incapable efficacy.

each developing stage of larvae in experimentally infected dogs, and the results of the studies were summarized in Table 3. According to Orihel (1961) [19], larvae of *D. immitis* soon after inoculation are at the L₃ stage, 1-month old worms are at the L₄ stage, 2-months old worms are at the late L₄ and/or early L₅ stage, and 3-months old worms are at the L₅ stage. Thus, it appears that developing larvae of every stage can be found in dogs naturally infected with *D. immitis*. Therefore, efficacy of ivermectin against the larvae of every stage should be evaluated to establish an administration schedule of the drug for prevention of *D. immitis* infection. To prevent *D. immitis* infection, larvae at intermediate location should be killed before the larvae migrate to the right ventricle or during a period of 70 to 85 days after infection. To ensure prevention of the infection, the larvae at the L₃ to early L₅ stage, during a period of 2 months after infection, should be killed. The previous reports were discussed on this point of view. Blair and Campbell (1980) [3] and McCall *et al.* (1981) [15] reported that administration of ivermectin 3 months after infection showed incomplete efficacy against the larvae. It seems that some of larvae could have migrated to the right ventricle 3 months after infection, and ivermectin fails to show complete efficacy against the larvae at this stage. Table 3 indicates that a single oral administration of ivermectin at 50 μg/kg immediately, 1 month, and 2 months after infection showed complete efficacy against larvae [3, 4] and ivermectin at 3 and 12.5 μg/kg 1 month after infection demonstrated complete efficacy against larvae at the stage [15]. However, it is not clear if ivermectin at these doses is effective against larvae immediately, and 2 months after infection. The number of inoculated larvae for the studies conducted by Blair and Campbell (1980) [3], McCall *et al.* (1981) [15], and Blair *et al.* (1982) [4] may be too small to evaluate efficacy of ivermectin against canine dirofilariasis under natural infections, based on the fact that in an area in Japan where incidences of *D. immitis* were found at 59.1%, numbers of the worm recovered from dogs which had passed one infectious season ranged from 1 to 58 worms (averaged 11.1 worms), and
13.5% of the dogs harboured over 21 of the worms [17]. It is thought in highly infected areas, over 100 infective larvae per dog should be inoculated for basic studies to appropriately evaluate preventive efficacy of ivermectin against the infection. It is considered, therefore, that the previous studies failed to establish optimal dose and dose-interval of ivermectin to demonstrate its sufficient preventive efficacy against the naturally acquired infections.

Referring to the data by McCall et al. (1981) [15] that a single oral administration of ivermectin at 3 μg/kg was effective against 1-month old larvae, we conducted the study using five different doses of ivermectin 0.5, 1, 2, 3, and 5 μg/kg, and inoculum sizes of over 100 infectious larvae to evaluate its efficacy against 1-month old larvae. The results indicated that dose-related decrease in numbers of larvae migrating to the right ventricle was observed and no worms were found in dogs receiving ivermectin at 3 μg/kg or more indicating that the minimum effective dose is 3 μg/kg. The conclusion of the study supports that of McCall et al. (1981) [15]. Further studies should be conducted to evaluate if ivermectin at 3 μg/kg is also effective against L3, late L4 and early L5 stages of larvae.

The present results were that the sex ratios of immature worms recovered from the right ventricle and pulmonary arteries of the dogs receiving ivermectin decreased as dose increased, and those of the worms recovered from the dogs receiving ivermectin at 1 and 2 μg/kg were significantly different from the control. This clearly indicates that the number of female worms recovered from the treated dogs was smaller than that of male worms. It is reported that the sex ratio of adult worms recovered naturally infected dogs was 1.04 or 1.16 and the number of female worms was almost equal or slightly larger than that of male worms [17, 18]. Less females in terms of the sex ratios were recovered from dogs receiving ivermectin at 1 and 2 μg/kg than that from naturally infected dogs. It seems likely that the female is more sensitive to ivermectin than the male.

The average body length of worms recovered from the control dogs was almost equal to that of worms of same age reported elsewhere [13]. However, the average body lengths of worms recovered from the dogs receiving ivermectin 0.5, 1 and 2 μg/kg, except for that of female worms at 1 μg/kg, were significantly shorter than those of worms recovered from the control dogs. This suggests that ivermectin had inhibitory effect on growth of larvae. The results of the present study show that no ectopic parasitism of the worms was found in the abdominal and thoracic cavities of the treated dogs, and ivermectin exerts no action on stimulating the ectopic parasitism of the worms. Previous reports [6, 8] suggest that a minimum oral toxic dose of ivermectin in dogs was 2.5 mg/kg except for collies. Ivermectin at extremely low doses of 0.5 to 5 μg/kg caused no abnormal findings in dogs in the present study.

REFERENCES

要約

犬糞状虫感染に対するivermectinの予防効果：感染後30日虫齢の幼虫に対するivermectinの殺虫効果：大石勇・片江宏己1)・早崎聡夫・多田聡光2)（東京農工大学農学部薬剤学講義）1)日本製薬工業薬品製品局薬品試験所2)（日本製薬工業）——ivermectinの犬糞状虫幼虫に対する殺虫効果を、感染後30日虫齢の幼虫について検討した。Ivermectinの1回経口投与によって幼虫に対し確実な殺虫効果がある投与量は1μg/kg 以上であり、0.5, 1, 2μg/kg 投与量でも幼虫に対して用量依存性に不完全な殺虫効果が認められた。Ivermectin 0.5, 1, 2μg/kg を30日虫齢の幼虫に投与すると、検出虫の性比（雌虫/雄虫）は对照群よりも小さく、明らかに雌虫の減少が認められた。また、検出虫の平均体長も投薬群では1μg/kg 群の雌虫を除き、雌・雄虫ともに対照群より有意に短短であった。

1) OHISHI, I., KATAE, M., HAYASAKI, AND Y. TADA

References: