A New Quantitative Method for Oral Vaccination of Killed cells and Persistence of the Vaccination against Fecal Excretion of *Yersinia enterocolitica*

Junko YANAGISAWA, Ken-ichi KANEKO, Hideki HAYASHIDANI, and Masuo OGAWA

Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu Tokyo 183, Japan

(Received 6 March 1987/Accepted 10 June 1987)

ABSTRACT. Mice were orally vaccinated and challenged with *Yersinia enterocolitica* 03 strain to determine the precise amount of killed bacterial cells, the number of doses and the interval for efficient oral vaccination. The rate of protection against fecal excretion reached 100% in the mice receiving three doses. Among the mice immunized with three doses, the rate of protection reached 100% in three groups of mice vaccinated with a total amount of 500 mg at 7-day intervals, or 250 mg at 7-day intervals, or at 4-day intervals. Mice were challenged after three doses of oral vaccine of a total amount of 250 mg of the killed cells at 4-day intervals to know persistence of the protection. The bacteria challenged 1 week to 6 months after the final vaccination were significantly blocked from colonizing in the intestines. Challenge 2 or 3 weeks after the final vaccination provided mice the maximum protection rate of 100%. There was a significant increase in the rate of mice excreting the bacteria 6 months after the final vaccination.—**KEY WORKS:** oral vaccination, *Yersinia enterocolitica.*

There are a few reports on the oral vaccination with killed cells of *Yersinia enterocolitica*. Kaneko and Hashimoto [4] reported inhibition of fecal excretion of *Y. enterocolitica* in the mice vaccinated orally with killed bacteria and protection of the mice challenged 1 week after oral vaccination against fecal excretion of the bacteria. Persistence of the protection against fecal excretion by the oral vaccination, however, is still unknown. On the other hand, the usual method of oral vaccination allowing mice to drink the vaccine at will as drinking water has a disadvantage of inaccurate amount of killed cells of the vaccine. It is necessary to develop an accurate vaccination method to provide mice with the protection against fecal excretion by oral vaccination with killed cells. The present study was planned to develop an accurate vaccination method to know persistent duration of the protection against fecal excretion by the oral vaccination.

MATERIALS AND METHODS

Bacteria, animal, challenge and culture methods: The bacterial strain used was *Y. enterocolitica* serovar 03 strain isolated from a brown rat. Biochemical characters of this strain (SD1416-11) were described in a previous report [3]. The strain was demonstrated to harbor the 42 Megadalton virulence-associated plasmid by the method of Kado and Liu [2] and to be Ca²⁺-dependent according to the method of Higuchi and Smith [1]. It was cultured on Trypticase soy agar (BBL) at 25°C for 48 hr. The bacterial cells were suspended in a mixture of equal volumes of calf serum and a 10% lactose-water solution and stored at -80°C. Female 4-week-old SPF ICR mice (Shizuoka Agric. Coop. Assoc. Labo. Anim., Shizuoka) were used. The mice were shown not to harbor *Yersinia* species by culturing their feces before the experiment. A frozen stock strain was thawed and mixed in physiological saline to a concentration of 10⁷ viable cells.
per 0.1 ml. The mice were intragastrically challenged with 0.1 ml of the mixture containing 10^7 viable cells through a gastric feeding tube. In experiments No. 1 to No. 8, mice were challenged 3 weeks after the final vaccination. Quantitative direct culture of feces was done as described previously [4].

Vaccine preparation: Killed vaccine was prepared as follows: The organisms grown on Trypticase soy agar (BBL) for 48 hr at 25°C were suspended in physiological saline solution. Formaldehyde was added to a final concentration of 1% to the suspension of the live organisms, and the suspension was maintained at room temperature for over one day. The formalin-killed cells were centrifuged to eliminate formaldehyde and the precipitate was suspended in physiological saline to a final concentration of 500 mg/ml (wet weight). This suspension was used as vaccine. Formalin-killed cells were given orally to mice through a gastric feeding tube.

Statistical analysis was made by Fisher's exact test.

RESULTS

The number of doses of oral vaccination with killed cells was appraised first. The total amount of the killed cells administered was 500 mg in all five experiments shown in Table 1. In all experiments but No. 1, mice were given oral vaccination at 7-day intervals and were significantly protected against fecal excretion ($P<0.03$).

It was demonstrated that the three doses of oral vaccination most effectively protected mice against fecal excretion. Then, the total amount of the killed cells and the intervals between doses were appraised. It was also demonstrated that the total amount of 500 mg of the killed cells protected mice in experiment No. 3 (Table 1). The total amounts of 125 and 250 mg of the killed cells were evaluated. Since the 7-day intervals of vaccination was demonstrated to be effective (Table 1), we attempted to shorten the intervals of vaccination. In experiment No. 6 (Table 2), mice were orally inoculated with three doses of 167 mg of vaccine at 2,
VACCINATION AGAINST *Y. ENTEROCOLITICA*

Table 2. Effect of total amount of killed cells and vaccination intervals on the protection against fecal excretion of *Y. enterocolitica* in mice

<table>
<thead>
<tr>
<th>Exp. No.</th>
<th>Total cells (mg)</th>
<th>Vaccination Intervals</th>
<th>Mice tested</th>
<th>Mice shedding bacteria, days after challengeb</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>500 (3×163)</td>
<td>7 days</td>
<td>7</td>
<td>0 (6.83)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 days</td>
<td>7</td>
<td>1 (6.98)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 days</td>
<td>7</td>
<td>2 (2.70, 4.30)</td>
</tr>
<tr>
<td>7</td>
<td>250 (3×83)</td>
<td>7 days</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 days</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>125 (3×42)</td>
<td>7 days</td>
<td>7</td>
<td>1 (3.16)</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td>7</td>
<td>7 (7.26±0.18)</td>
</tr>
</tbody>
</table>

a The formula in parentheses indicates the number of doses by each dose.

b Values denote the same in Table 1.

Table 3. Persistence of protection against fecal excretion in mice orally vaccinated with three doses of 83 mg of killed cells of *Y. enterocolitica* at 4-day interval

<table>
<thead>
<tr>
<th>Challenge after final oral vaccination</th>
<th>Mice Tested</th>
<th>Mice shedding bacteria, days after challengeb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 week</td>
<td>Vaccinated</td>
<td>8 (3.98)</td>
</tr>
<tr>
<td></td>
<td>Unvaccinated</td>
<td>7 (6.42±0.31)</td>
</tr>
<tr>
<td>2 weeks</td>
<td>Vaccinated</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Unvaccinated</td>
<td>7 (6.73±0.30)</td>
</tr>
<tr>
<td>3 weeks</td>
<td>Vaccinated</td>
<td>9 (4.30, 5.81)</td>
</tr>
<tr>
<td></td>
<td>Unvaccinated</td>
<td>7 (6.92±0.48)</td>
</tr>
<tr>
<td>2 months</td>
<td>Vaccinated</td>
<td>7 (6.14±0.81)</td>
</tr>
<tr>
<td></td>
<td>Unvaccinated</td>
<td>7 (7.04±0.33)</td>
</tr>
<tr>
<td>4 months</td>
<td>Vaccinated</td>
<td>4 (5.62±0.97)</td>
</tr>
<tr>
<td></td>
<td>Unvaccinated</td>
<td>7 (7.12±0.19)</td>
</tr>
<tr>
<td>6 months</td>
<td>Vaccinated</td>
<td>4 (5.54±0.96)</td>
</tr>
<tr>
<td></td>
<td>Unvaccinated</td>
<td>7 (6.40±0.54)</td>
</tr>
</tbody>
</table>

a Values denote the same in Table 1.

4- and 7-day intervals. These mice were significantly protected against fecal excretion of the challenged organism (*P*=0.01, *P*=0.002 and *P*=0.003, respectively). In experiment No. 7 with a total amount of 250 mg of the killed cells, fecal excretion was inhibited in all mice receiving at 7-day intervals and also in all at 4-day intervals. In experiment No. 8, fecal excretion was also significantly inhibited in the mice having received three doses of 42 mg of the killed cells (*P*=0.002). All seven unimmunized mice excreted the bacteria for 14 days after challenge with 10^6 to 10^7 cells.

To see duration of protection against fecal excretion mice were challenged 1, 2 and 3
weeks and 2, 4 and 6 months after the third
dose of 83 mg of the killed cells by the 4-day
interval method. The mice challenged a
week after vaccination were significantly
inhibited from excreting the bacteria in their
feces (P=0.001). All mice challenged 2 or 3
weeks after vaccination were inhibited from
excreting the bacteria. The mice challenged
6 months after vaccination were still signifi-
cantly inhibited from excreting the bacteria
in feces (P=0.029). Two of nine mice
challenged 2 months after vaccination and
three of nine mice challenged 4 months after
vaccination excreted the bacteria in their
feces for 14 days. Four of nine mice chal-
leged 6 months after vaccination shed the
bacteria for 14 days. The rate of mice
shedding the bacteria began to increase 2
months after the vaccination. There was a
significant difference in the rate of mice
shedding between those challenged 2 or 3
weeks and those challenged 6 months after
the vaccination (P=0.041).

DISCUSSION

Uchida et al. [5] reported that oral admi-
nistration of formalin-killed *Y. enterocoliti-
ca* cells for 4 weeks protected the mice
against fecal excretion. The final concentra-
tion of vaccine of the previous report was 1
mg/ml. A total of 500 mg of the killed
bacteria was estimated to be needed to
protect mice against fecal excretion. In the
present study, we found that three doses of
vaccination were the best to provide the
protection, a total amount of 250 mg of the
killed cells provided mice with the max-
imum protection, and the 4-day interval
method also provided mice with the max-
imum protection rate as did the 7-day
interval method. The mice can be more
quantitatively vaccinated against fecal ex-
cretion by the method devised in the present
study.

In the present study, *Y. enterocolitica* was
significantly inhibited from colonizing in the
intestines of mice challenged a week or 6
months after the final oral vaccination. It
was also demonstrated that the protection
rate of the mice challenged 6 months after
the final oral vaccination was significantly
lower than that of those challenged 2 or 3
weeks after that. These facts suggest that
the protection starts as early as a week after
the final vaccination, persist for 6 months
and begins to decrease 6 months after the
final vaccination. Kaneko and Hashimoto
[4] reported that formalin-killed cells of
serovar 03 of *Y. enterocolitica* provided
cross-protection against serovar 09 and vice
versa and that serovar 06 of *Y. enterocolitica*
did not furnish cross-protection against
serovar 03. These facts may suggest that the
protection against fecal excretion with oral
killed vaccine is due to acquired immunity
and that this immunity would persist for at
least 6 months.

REFERENCES

nutrition and physiology of *Pasteurella pestis*. VI.
A differential plating medium for the estimation of
the mutation rate to avirulence. *J. Bacteriol.* 81:
605–608.

for detection and isolation for large and small

of *Yersinia enterocolitica* delineated by numerical

4. Kaneko, K., and Hashimoto, N. 1983. Cross-
resistance to fecal excretion of *Yersinia enterocoliti-
ca* in mice by oral vaccination of killed cells. *Infect.

The effect of oral and parenteral immunization
with killed vaccines on the fecal shedding of mice
fed *Yersinia enterocolitica*. *Jpn. J. Vet. Sci.* 44:
539–542.
要約

Yersinia enterocolitica に対する新しい定量的経口免疫法並びに同経口免疫の持続期間：柳沢順子・金子賢一・林谷秀樹・小川益男（東京農工大学農学部家畜衛生学教室）——_Yersinia enterocolitica_ 03菌に対する定量的経口免疫法を検討するために、同菌のホルマリン死菌を用いて投与回数、投与菌量および投与間隔を変えた試験条件を検討した。(1) 総菌量 500mg または、(2) 同 250mg を 1 週間隔で 3 回に分けて経口投与、あるいは、(3) 同 250mg を 4 日間隔で 3 回に分けて経口投与するいずれのマウス群でも 100％の腸管定着阻止率を示した。(3) の方法によって経口免疫されたマウスについて、経時的に生菌攻撃を行って免疫の持続期間を検討したところ、最終死菌投与後 6 ヶ月において腸管定着阻止率の有意な低下が認められた。