Decrease in Erythrocyte Survival in *Theileria sergenti*-Infected Calves Determined by Non-Radioactive Chromium Labelling Method

Yukio YAGI, Nobuhiko ITO, and Iwao KUNUGIYAMA

Systematic Diagnosis Research Division, National Institute of Animal Health, Tsukuba, Ibaraki 305 and \(^1\)School of Veterinary Medicine and Animal Science, Kitasato University, Towada, Aomori 034, Japan

(Received 3 August 1990/Accepted 17 January 1991)

ABSTRACT. Pathogenesis of anemia in the calves infected with *Theileria sergenti* was investigated from the viewpoint of erythrocyte survival decrease in the circulating blood. For investigation of erythrocyte survival a method of erythrocyte labelling with non-radioactive chromium (\(^{50}\)Cr) was utilized. It was found that (1) the erythrocyte survival decreased markedly in the *T. sergenti*-infected calves compared with that in the uninfected calves; the survival rate of 25.7% for infected calves and 86.0% for uninfected ones on the fourth day after re-introduction of the labelled erythrocytes into the original donors, and that (2) the survival of non-parasitized erythrocytes in the infected calves was also decreased, which indicates no obvious relationship between parasitism and decrease in survival of erythrocytes. —KEY WORDS: anemia, \(^{50}\)Cr, erythrocyte, survival, *Theileria sergenti*.

Bovine theileriosis due to *Theileria sergenti* is prevalent among cattle on pastures in Japan. The affected cattle manifests symptoms represented by anemia, resulting in the decrease in daily gain, loss of body weight, and death in the severest case. From this reason the disease is considered to cause economic loss in the animal husbandry which raises cattle on pastures in this country [3]. However, there have been no fundamental countermeasures developed so far. Elucidation of anemia pathogenesis will be the prerequisite for development of the fundamental countermeasures against *T. sergenti* infection.

As a part of study for elucidating pathogenesis of the anemia, the survival of erythrocytes in vivo was examined in the present study by using the method of erythrocyte labelling with non-radioactive chromium [2, 5], which had been developed for the examination of erythrocyte survival in the human patients who were unsuitable for the utilization of radioisotope.

MATERIALS AND METHODS

Experimental animals: Five Japanese Black calves, which were aged 5–6 months and proved not to be infected with *T. sergenti*, were used in the present experiment. Three calves (Nos. 28, 29 and 30) were infected with Ikeda stock of *T. sergenti* through infestation by 150 infected nymphal *Haemaphysalis longicornis* ticks. Another 2 calves (Nos. 26 and 27) were infested by 150 uninfected nymphal *H. longicornis*. All the calves were raised, until the cessation of experiment, individually in each pen which was free from *H. longicornis*.

Routine blood examination: Number of erythrocytes, packed cell volume (PCV), hemoglobin concentration and percentage of *T. sergenti*-parasitized erythrocytes in Giemsa-stained blood smears were examined at 1–3 day intervals starting from the infestation of calves by ticks until the cessation of the experiment.

Preparation of \(^{50}\)Cr-labelled erythrocytes: The enriched stable isotope \(^{50}\)Cr, obtained from Oak Ridge National Laboratory, was converted to \(\text{Na}_2\text{CrO}_4\) according to the report of Kunugiya et al. [4]. The \(\text{Na}_2\text{CrO}_4\) was dissolved in physiological saline solution and adjusted to give the concentration of 20 \(\mu\)g \(^{50}\)Cr/ml.

Re-introduction of \(^{50}\)Cr-labelled erythrocytes into the original donors: Approximately 100 ml of the blood was collected at the critical period of parasitemia (28 days post tick infestation; 28 days pit) from infected calves and also from uninfected calves, simultaneously. The blood samples were anticoagulated by addition of acid citrate dextrose. They were then mixed with the \(\text{Na}_2\text{CrO}_4\) saline solution in the ratio of 1 to 10, and incubated for 90 min at room temperature, with frequent gentle stirring, for \(^{50}\)Cr-labelling. The bloods were then centrifuged for 15 min at 4°C and plasmas were discarded. Physiological saline solution was added to the sedimented blood cells to restore the original volume. The blood suspensions were re-introduced into the original...
donor calves. Each calf was bled 1 day after re-introduction and at 3 days intervals, thereafter. The blood samples were centrifuged for 15 min at 4°C. The deposited blood cells were freeze-dried, sealed in polyethylene sheet bags and stored frozen until neutron irradiation.

Fractionation of 50Cr-labelled erythrocytes: A portion (2 ml) of 50Cr-labelled blood suspension for re-introduction was removed and subjected to Percoll-Conray density gradient centrifugation [9]. The fractions, rich or poor in parasitized erythrocytes, were collected for radioactivity comparison.

Neutron irradiation and radioactivity measurement: The method of thermal neutron irradiation and gamma ray measurement is described in the previous report of Kunugiyma et al. [4]. Briefly, the 50Cr-labeled blood samples, which were kept sealed in polyethylene bags, were irradiated by thermal neutron in a reactor at Japan Atomic Energy Research Institute. Radioactivities due to 51Cr and 59Fe, which were produced by neutron irradiation, were measured by a germanium detector with a gamma-ray spectrometer and a pulse-height analyzer. The ratio of 51Cr/59Fe counts was calculated by photopeak area of gamma-ray.

RESULTS

Hematological changes detected by the routine blood examination on T. sergenti-infected calves: Some hematological changes were detected by the routine blood examination on T. sergenti-infected calves. As shown in Fig. 1, T. sergenti-parasitized erythrocytes began to appear in the peripheral blood of the infected calves 14–16 days pti and became most abundant 30–32 days pti to give parasitemia of 2.9–10.8% (an average of 7.8%). PCVs, erythrocyte counts, and hemoglobin concentrations began to decrease 10 days pti and gave the minimum value 28–30 days pti, followed by a gradual recovery of PCV and hemoglobin concentration. Number of erythrocytes, on the other hand, did not recover within the experimental period of 50 days pti. In uninfected calves there were no obvious changes detected until the cessation of the experiment.

Decrease in survival in vivo of 50Cr-labelled erythrocytes: Figure 2 shows the survival of 50Cr-labelled erythrocytes in circulation of the T. sergenti-infected and -uninfected calves. The survival rate was expressed by the value of 51Cr/59Fe according to the procedure described by Drysdale et al. [2]. The erythrocyte survival in the infected calves decreased significantly 4 days after re-introduction of the labelled erythrocytes up to the value of 25.7%. The decrease in this period was approximately 3.3 times greater in the infected calves than in the uninfected ones. From the day 4 on, the survival rate in the infected calves decreased gradually until almost all the 50Cr-labelled erythrocytes disappeared from circulating blood at the day 16.

Responsibility of both the parasitized and non-parasitized erythrocytes for decrease in erythrocyte survival in circulation of infected calves: In order to determine what kind of erythrocytes, i.e. parasitized erythrocyte, non-parasitized one or both of them, is responsible for the decreased erythrocyte survival in circulation of infected calves, radioactivity of parasitized cell-rich fractions and that of non-parasitized cell-rich fractions were compared. The 50Cr-labelled erythrocytes of calf No. 28 were fractionated, prior to re-introduction, to produce the erythrocyte fractions which were different in percentage of parasitized cells, and then radioactivity of these fractions was compared.
The result is shown in Fig. 3. The fraction No. 10, which was most abundant of parasitized erythrocytes, did not show the highest radioactivity, while the fraction No. 4, which was rich in non-parasitized cells and poor in parasitized ones, did show the highest radioactivity. It was found, therefore, that the non-parasitized erythrocytes could also be labelled with 51Cr and that both the parasitized and non-parasitized erythrocytes are responsible for the decreased survival of erythrocytes in blood circulation of the infected calves.

Furthermore, hematological examination on erythrocyte population in the blood used for 51Cr-labelling revealed rare presence of abnormal erythrocytes such as reticulocytes and/or macrocytes, which indicated little concern of such abnormal erythrocytes with the decrease in erythrocyte survival in the present examination.

DISCUSSION

It was demonstrated first in the present study that the survival of erythrocytes in the circulating blood of T. sergenti-infected calves decreased more rapidly than that of uninfected ones and also that the decrease occurred not only in parasitized erythrocytes, but also in non-parasitized ones. The reason for this survival decrease is not clear yet.

Two possible reasons can be considered for cause of the survival decrease; intrinsic defects of erythrocyte itself and extrinsic influences on erythrocytes. Some hereditary diseases like thalassemia, erythrocyte enzymopathy, hemoglobinopathy or spherocytosis are categorized into the intrinsic defect. On the other hand, influences of parasitism, malfunction in vascular endothelium like disseminated intravascular coagulation (DIC), non-specific acceleration of erythropoiesis, denaturing of blood plasma, etc. are categorized into the extrinsic influence.

In case of T. sergenti infection it is hard to consider that the erythrocyte survival decrease is due to the intrinsic defects of erythrocytes because erythropoietic function in the T. sergenti-infected calves seems not to be damaged [8].

Extrinsic influences on erythrocytes seem to be the most probable reason for erythrocyte survival decrease in this infection. Influence of parasitism was denied by the fact that even non-parasitized erythrocytes shortened their life. Influences of malfunction in vascular endothelium and non-specific acceleration of erythropoiesis seem not to be of the primary importance, because they have not been observed in T. sergenti infection so far.

The most probable reason for erythrocyte survival decrease seems to be the influence of denatured blood plasma, because the evidence suggesting denaturing of blood plasma has been reported for another protozoan infections [1, 6, 7].

Rosenberg et al. [7] reported on production of the antiererythrocyte antibody in blood plasma and responsibility of the antibody for decreased erythrocyte survival in vivo in P. falciparum infection. In T. sergenti infection, however, production of such antibody has not been reported so far. Further study will be needed for demonstration of the antibody.
On the other hand, Clark et al. [1] reported on production of oxygen-derived free radicals in vivo in Plasmodium infection. In addition, Quinn and Wyler [6] reported on decrease in erythrocyte survival induced by intravenous administration of the free radicals. The finding in the experiment performed by one of the present authors and his associates [10] also suggests a possibility of free radical involvement in T. sergenti infections. Further studies are needed for demonstration of free radical involvement and elucidation of the reason for erythrocyte survival decrease in T. sergenti infection.

ACKNOWLEDGEMENTS. The authors are grateful to Dr. Ichiro Takatori, Director, Systematic Diagnosis Research Division, National Institute of Animal Health, for critical review of the manuscript.

REFERENCES