Secondary Antibody Response to *Haemophilus somnus* Antigen in Breeding Japanese Black Cattle Fed Selenium-Deficient and α-Tocopherol-Fortified Diets

Susumu MAKIMURA, Akira KODAMA, Mitsuru KISHITA, Hiroshi TAKAGI, and Kozo ADACHI

Department of Veterinary Internal Medicine, Faculty of Agriculture, Miyazaki University, Gakuenkibanadai, Miyazaki-shi 889-21, Miyazaki-ken Miyakonojo Agriculture Mutual Aid Association, Miyakonojo-shi, Miyazaki 885, and Kyoto Biken, Uji-shi, Kyoto 611, Japan

(Received 17 November 1992/Accepted 3 June 1993)

Abstract. The cattle with adequate α-tocopherol (Vit E) and marginally deficient selenium (Se) status manifested significantly lower anti-*Haemophilus somnus* antibody titer than the cattle supplemented with Se in the later stage of an 8-week trial. However, in the early stage no difference was observed in magnitude of anti-*H. somnus* antibody development between them. These results suggested that Se may contribute to anti-*H. somnus* antibody production, and that Vit E can make up for Se deficiency to a certain degree. — **Key Words:** anti-*Haemophilus somnus* antibody, cattle, α-tocopherol and selenium.

Selenium (Se) and α-tocopherol (Vit E) were found to have complementary antioxidant activities in several species of animals. As Se and Vit E are required for the optimal immune system function [2, 4, 11, 13], Se- and Vit E-dead-adequate diets are reasonable feedstock for cattle. Most cattle in Japan, fed Vit E-dead-adequate forages, are at risk of developing Se deficiency. This is because most forages fed to cattle are from Se-deficient soils. Considering complementary antioxidant activities of Se and Vit E, the possibility rises that sufficient Vit E may make up for Se deficiency. However, Larsen et al. [7] reported that dietary Vit E supplementation exerted no stimulatory effect on mitogenic response of Se-deficient sheep lymphocytes. The present study was designed to examine the anti-*Haemophilus somnus* antibody production in the cattle with marginally deficient Se and adequate Vit E status, and compared with that in the cattle supplemented with Se.

Ten breeding Japanese Black female cattle at mid- and term-pregnant stages, 3 to 15 years of age, were used in an 8-week trial. They were kept indoors and divided into two groups. The cattle with marginal blood Se status, having been vaccinated with *H. somnus* two years before the trial, were fed Se-deficient and Vit E-fortified diets (basal diets) twice a day. Basal diets consisted of corn silage, straw and Italian rye grass. Six out of 10 cattle were i.m. injected with 25 mg Se and 500 mg Vit E on week 0 and 2 of the present study. Although only Se should have been injected for accurate study on influence of Se deficiency on anti-*H. somnus* antibody production, we could not obtain commercial Se used for therapy. All cattle were vaccinated with formalin-inactivated *H. somnus*, strain M-1 Br, on weeks 2 and 5 of the present experiment.

Anti-*H. somnus* antibody titer was determined by the ELISA technique. The modified method of Parnell and Hendry [10] and Canto et al. [1] was used for ELISA procedure. In brief, round-bottom ELISA plates (Immulon; Gliner Inc.) were coated with 0.1 ml of outer membrane complex antigen diluted 1:200 in carbonate buffer (pH 9.6). After incubation, the plates were washed 4 times with 0.02% Tween-20 in PBS (Tween-PBS, pH 7.4), were then blocked with 0.25 ml of PBS containing 0.05% of ovalbumin type VII for 16 hr at 4°C. After washing the plates, 0.1 ml of serum diluted 1:400 in Tris-buffer (pH 7.4) was added, and the plates were then incubated at 30°C for 1 hr. Washing procedure was repeated 4 times and 0.1 ml of rabbit peroxidase-conjugated anti-bovine IgG antibody diluted in Tween-PBS was added. The plates were incubated at 30°C for 30 min, and thereafter washed again. Then 0.1 ml of substrate solution (o-phenylenediamine in phosphate-citrate buffer, pH 5.2) was added and the plates were incubated at 30°C for 30 min. Finally, colorimetric reaction was terminated by adding 0.1 ml of 1 M sulfuric acid. The well contents were measured for the absorbance at 492 nm.

Serum Se concentration was determined by atomic absorption spectrometry [8]. Serum Vit E content was determined by a fluorimetric method [16]. Glutathione peroxidase (GSH-px) activity in whole blood was measured according to the method of Paglia and Valentine [9].

As shown in Figs. 1 and 2, the cattle supplemented with Se showed significantly high serum Se concentration (p<0.001) and whole blood GSH-px activity (p<0.01) after the 2nd week, whereas the cattle without Se supplementation exhibited marginally low serum Se concentration and whole blood GSH-px activity throughout the experimental period. Because Se works as a component of GSH-px [12], serum Se level was well correlated with the whole blood GSH-px activity. Serum Vit E level increased and remained far above the low end of the normal range of 150–200 μg/dl [3] in both groups (Fig. 3), which may be due to the feeding of Italian rye grass. Regarding anti-*H. somnus* antibody production (Fig. 4), the cattle supplemented with Se manifested significantly higher anti-*H. somnus* antibody level on the 8th week, although until the 6th week the cattle without Se supplementation exhibited the upward trend of anti-*H. somnus* antibody production as did the cattle supplemented with Se.

As observed on the 8th week, Se supplementation for cattle with adequate Vit E and marginally deficient Se status produced significantly stronger anti-*H. somnus* antibody response. There was no significant difference in average age and pregnant period between the groups. Se status may therefore account for such a prominent
difference in serum anti-\textit{H. somnis} antibody level between the groups. Important roles of Se in optimal humoral immune response were reported by many investigators \cite{5, 6, 14, 15}. On the contrary Turner and Finch \cite{17} noted that Se supplementation for marginally Se-deficient and Vit E-adequate lambs induced little enhanced antibody response to a \textit{Salmonella dublin} vaccine. Thus the effects Se exerts on immune response vary with species and antigen.

It should be noted that even the Se-deficient cattle demonstrated the same magnitude of anti-\textit{H. somnis} antibody response as did the cattle supplemented with Se until the 6th week. Considering a markedly increased serum Vit E level far above the low end of the normal range of 150–200 µg/dl during the experiment, it is suggested that Vit E might make up for Se deficiency with its complementary antioxidant activity.

Se and Vit E may be involved in membrane fluidity of lymphoid cells, thus affecting immune response mechanism \cite{13}. However, the mechanism where influencing
immun e response is different, indicating coupled with our present results that Vit E, making amends for Se deficiency to a certain degree, cannot substitute for Se as modulator of immune response.

REFERENCES