Immunohistochemical Analysis of Tissue Distribution of B and T Cells in Germfree and Conventional Chickens

Kazuhiro HONJO, Takehiro HAGIWARA1, Kikui ITOH1, Eiji TAKAHASHI1, and Yoshikazu HIROTA2
Laboratory of Immune Cytology, National Institute of Animal Health, 3-1-1 Kannondai, Tsukuba, Ibaraki 305 and 1Department of Veterinary Public Health, Faculty of Agriculture, The University of Tokyo, Bunkyo-ku, Tokyo 113, Japan
(Received 12 April 1993/Accepted 28 June 1993)

ABSTRACT. The distribution of lymphocytes in lymphoid organs of germfree (GF) and conventional (CV) chickens was compared immunohistochemically with several monoclonal antibodies. The lymphoid follicles in the cecal tonsils of GF chickens were more poorly developed than in those of CV chickens, and IgG and IgA positive cells were also not found in GF chickens. The number of both B and T cells in the villous region of the cecal tonsils in GF chickens was less than that in CV chickens. In the spleen of GF chickens, the distribution of B cells was similar, but T cells were distributed more widely in CV chickens than in GF chickens. There was no clear difference in the distribution of lymphoid cells in the bursa of Fabricius and the thymus. These results suggest that the development of gut-associated lymphoid tissues is affected by intestinal flora.—KEY WORDS: chicken, germfree, immunohistochemistry.


The absence of low levels of natural antibodies, immunoglobulins and spontaneous plaque-forming cells is reported in germfree (GF) animals [2, 5, 7], because intestinal flora have an important influence on the immune system as well as physiology, metabolism and nutrition of the animal host.

As a useful laboratory animal, the chicken has been used for immunological studies because it possesses the bursa of Fabricius, a unique central lymphoid organ, primarily involved in the development of the B cell dependent immune system. Little is reported about the effect of intestinal flora on the development of lymphoid organs in the chicken. The purpose of the present study is to compare the distribution of B and T cells in the lymphoid organs of GF and conventional (CV) chickens immunohistochemically.

Inbred line P chickens (MHC; B1B1), kept at the National Institute of Animal Health, Japan, were used. GF chickens were produced according to the method described by Ishibashi et al. [4]. They were maintained in stainless isolators, and given an irradiated commercial diet (Nippon Formula Feed Manufacturing, Japan; Chick Food, 50 kGy) and sterilized water. Fresh fecal samples were collected for microbial contamination test [4]. CV chickens were reared under conventional conditions. Three GF and 6 CV chickens were euthanized at 4 weeks of age. Tissues of the bursa of Fabricius, thymus, spleen, and cecal tonsil were taken from GF and CV chickens. Fresh tissues were embedded in Tissue-Tek OCT compound (Miles, U.S.A.), snap frozen in liquid nitrogen, and stored at −80°C until use. The 4 µm frozen sections were cut, immediately air-dried, fixed in acetone at 4°C for 10 min, and rehydrated in phosphate-buffered saline (PBS, pH 7.2). Tissue sections were first covered with PBS containing 10% heat inactivated horse serum for 30 min to block nonspecific binding. The sections were then incubated for 30 min with the primary monoclonal antibodies (mAbs). Subsequently, the sections were incubated with biotinylated anti-mouse IgG (Vector Lab-

atories, Inc., U.S.A.) for 30 min. After blocking endogeneous peroxidase with 0.3% H2O2 in methanol, the sections were then incubated with the avidin-biotin peroxidase complex (Vector Laboratories, Inc., U.S.A.). Finally, the sections were colored with the 3,3'-diaminobenzidine (0.2 mg/ml) and 0.01% H2O2. Between each incubation the slides were washed three times with PBS. The sections were then counterstained with Mayer's hematoxylin (Merck, Germany), dehydrated in graded alcohols, cleared in xylene, and mounted for microscopic observation. The following mouse monoclonal antibodies were used as primary antibodies: CT3 (CD3 specific), L22 (Bu-1a specific), 11G2 (Bu-1b specific), 3E8 (IgG Fe specific), B-4D-4 (IgA a chain specific) and A-13 (IgM specific). To detect Bu-1 antigen, a mixture of L22 and 11G2 was used.

The lymphoid follicles in the cecal tonsils were more poorly developed in the GF chickens than in the CV chickens. Germinal centers were observed in the lymphoid follicles of the CV chickens, and the lymphoid follicles contained CD3, IgG, IgM and IgA positive cells (Fig. 1A). On the other hand, no germinal centers were observed in the lymphoid follicles of the GF chickens, and neither IgA nor IgG positive cells were observed in the lymphoid follicles (Fig. 1B), though CD3 and IgM positive cells were detected.

In the villous region of cecal tonsils, the number of CD3 positive cells in the GF chickens was less than that in the CV chickens (Fig. 2). Moreover there were many IgA positive cells in the CV chickens, but very few in the GF chickens (Fig. 3). In the CV chickens, the number of IgM and IgG positive cells was much less than that of IgA, and was negligible in the GF chickens.

In the spleen of neither the GF nor the CV chickens, any germinal centers were observed. The tissue distribution of B cells was similar in both the GF and the CV chickens, though that of T cells was a little different. CD3 positive cells distributed more in the CV chickens than in the GF chickens (Fig. 4).

In the bursa of Fabricius, the development of lymphoid follicles was similar in both the GF and the CV chickens. A similar density of lymphocytes in the bursal follicles was observed. Most of the bursal lymphoid cells were IgM.

* Correspondence to: HIROTA, Y., Laboratory of Immune Cytology, National Institute of Animal Health, 3-1-1 Kannondai, Tsukuba, Ibaraki 305, Japan.
positive. A small population of bursal cells was IgG positive, and a few cells were IgA positive. No CD3 positive cells were detected in the bursal follicles of either type of chicken.

In the thymus, there was no significant difference between the GF and the CV chickens in the tissue distribution of lymphoid cells.

One of the immunohistochemical features of the lymphoid organs of the GF chickens was a decrease in the relative number of B and T cells in the cecal tonsils despite the lack of a difference in the immunohistochemical distribution of both primary organs of the bursa of Fabricius and thymus in the 4-week-old GF and CV chickens. In addition, germinal centers of the lymphoid follicles in cecal tonsils well developed in the CV chickens, though no germinal center was detected in the GF chickens. This suggests that the development of intestinal immunity may be enhanced by intestinal flora. In particular, IgA positive cells were fewer in the GF chickens, although there were IgM positive cells in the lymphoid follicles even in the GF chickens. Class switch mechanisms may also be affected by intestinal flora. It has not yet been determined whether this tendency in tissue distribution continues in adult chickens or not, but at least, it is assumed from the data for GF mice and rats [1] that the lymphoid system may be more poorly developed in GF chickens.
chickens than in CV.

To the best of our knowledge, almost no effect has been observed due to the structural difference between the bursa of Fabricius in 4- and 8-week-old GF and CV chickens, suggesting that the development of bursal lymphocytes is not dependent on exogenous antigen stimulation [6]. On the other hand, follicles of the bursa of Fabricius isolated from environmental stimuli by ligation of the bursal duct developed poorly [3]. In our study, there was no clear difference in the tissue distribution of lymphocytes in the primary organs, thymus and the bursa of Fabricius, of the CV and GF chickens. This suggests that the development of these organs is not affected by bacterial flora. More detailed studies, especially based on the functional aspects of lymphocytes, are needed.

Acknowledgements. For kindly giving us anti-chicken lymphocyte monoclonal antibodies we thank Drs. M. D. Cooper and C. L. Chen (CT3), University of Alabama at Birmingham, U.S.A., Drs. O. Lassila and O. Vainio (L22 and 11G2), University of Turku, Finland, and Dr. T. Kajikawa (3E8, B-4D-4 and A-13), University of Osaka Prefecture, Osaka, Japan. This work was supported in part by the Special Coordination Fund for Promoting Science and Technology from the Science and Technology Agency of Japan.

REFERENCES

2. Bos, N. A., Kimura, H., Meeuwen, C. G., DeVisser, H.,


