Sex Steroid Levels throughout Gestation in Cows Carrying Normal and Malformed Fetuses

Osman Valli PATEL, Makoto HIRAKO, Toru TAKAHASHI, Nobuo SASAKI*, and Ikuo DOMEKI

Department of Veterinary Surgery and Obstetrics, Faculty of Agriculture, The University of Tokyo, Bunkyo-ku, Tokyo 113, Department of Animal Reproduction, National Institute of Animal Industry, P. O. Box 5, Norindanchi, Tsukuba, Ibaraki 305, and Department of Animal Reproduction, Faculty of Agriculture, Tokyo University of Agriculture, Sakuragakou, Setagaya-ku, Tokyo 156, Japan

(Received 13 September 1994/Accepted 29 March 1995)

Abstract. Birth of malformed/stillborn calves is a liability to farmers and diagnosis of the condition early in gestation would be of immense economic benefit. We report on peripheral plasma progesterone (P$_4$), estrone (E$_1$) and estradiol (E$_2$) concentrations quantified by radioimmunoassay throughout gestation in twin embryo recipient cows carrying normal (cow N), freemartin(cow F) and schistosomus reflexus fetuses (cow S). The undulating plasma P$_4$ profiles were identical in all three cows throughout gestation apart from that the concentration in cow F dramatically declined on day 254 and it subsequently gave birth to stillborn calves. The plasma E$_1$ concentration progressively increased in cow N to peak at parturition and then rapidly declined a day after parturition. E$_1$ levels were lower in cow F than in cow N and exhibited a sudden increase in concentration at day 254 of gestation followed by a dramatic decline. Cow S had lower E$_1$ levels throughout gestation than cow N and showed an undulating profile. The plasma E$_2$ profile paralleled the plasma E$_1$ profile in all the cows but the E$_2$ concentration throughout gestation was lower than the E$_1$ levels. Plasma E$_1$ and E$_2$ levels declined to < 20 pg/ml in cow N a day after parturition as opposed to > 150 pg/ml E$_1$ and > 20 pg/ml E$_2$ levels, respectively, in cows F and S. Our results indicate that E$_1$ and E$_2$ are better than P$_4$ as prognostic indicators of fetal in-utero status as well as the number of fetuses a cow is gestating.—Key words: cattle, estrogen, malformed pregnancy, progesterone.

Abnormal births account for approximately 0.5% of all pregnancies in cattle [11, 16]. Among these, freemartin and schistosomus reflexus are the two most common conditions encountered [11, 12, 16]. The etiology of freemartinism in cattle is well described elsewhere [11, 12, 16] and this is one of the many setbacks to the establishment of superfetation in cattle. Schistosomus reflexus has also been observed in other species [16] but its etiology remains unknown.

Early diagnosis of abnormal pregnancies would be of immense economic benefit to the farmer since in most cases dystocia is the norm; birth is usually via assisted deliveryBarre or caesarean section and the majority of the dams later develop breeding problems [11, 12, 16]. In humans, cytogenetics via amniocentesis to check for chromosomal aberrations is the most common method to check for fetal gross abnormalities is frequently employed during gestation in high-risk pregnancies [13]. At present, the use of these techniques, as well as the compact anatomical positioning of the reproductive organs within the pelvic cavity, is currently excludes the commercial application in animal industry.

The concentration of estrogens, primarily of foeto-placental origin, is substantially elevated during gestation in a number of species [19]. Consequently, in humans, monitoring of maternal estrogen profile allows prognosis of fetal well being and advance planning of neonatal care [5]. In domestic animals abnormal levels of hormones other than those of ovarian source have been reported in prolonged gestation [11, 12, 16]. To date, there are no reports in the literature on steroid levels of ovarian and/or foeto-placental source in cows carrying congenitally malformed fetuses, although their concentration during the normal cycle, pregnancy and postpartum period have been well defined [1-4, 7]. Therefore, we report on steroid levels of ovarian and foeto-placental source throughout gestation in cows carrying normal, freemartin and schistosomus reflexus fetuses.

Materials and Methods

The Holstein cows were part of a herd housed and managed in the National Institute of Animal Industry that served as recipients in an investigation to establish multiple pregnancies by using in vitro fertilized embryos. In order to induce multiple corpora lutea (C.L.) prior to the embryo transfer the cows were treated commencing in the mid-luteal phase (Day 10 to 14; day 0 was defined as the first day of standing estrus) of the preceding cycle with 2,000 I.U. of pregnant mare serum gonadotropin (PMSG), Serotropin, Teikoku Zoki Pharmaceuticals Co., Tokyo, Japan) and 30 mg of Prostaglandin F$_{20}$ (Panacelan, Daiichi Seiyaku Co., Tokyo, Japan) in split injections two days later.

The Japanese Black cow embryos were generated by in vitro fertilization [10] and non-surgically transferred on day 7 of the estrous cycle. A twin pregnancy was established by transfer of individual embryos into each uterine horn. Pregnancy was confirmed at day 30 by ultrasonography.

Blood was collected via jugular venipuncture into a 50 ml heparinized polypropylene tube, placed immediately on ice and centrifuged (1,800 × g at 4°C for 1 hr) within 1
hr of collection. The harvested plasma was stored at
-20°C until assayed. Blood was collected about every
third day from day 0, then daily for the last 10 days of
gestation and sampling was stopped one day post-partum.

Plasma (20 μl) progesterone (P₄) was extracted and
quantified by radioimmunoassay as described elsewhere
[3]. Assay sensitivity was < 0.5 ng/ml and intra- and
inter-assay coefficients of variation (C.V.) were 7 and
11%, respectively.

Plasma (2.5 m/s) estrone (E₁) and estradiol (E₂) were
extracted by diethyl ether, separated by column chromo-
tography (Sephadex LH-20, Pharmacia, Uppsala,
Sweden) and their concentrations were quantified by
radioimmunoassay [3]. Assay sensitivities for E₁ and E₂
were < 0.5 pg/ml. Intra-assay C.V.s for estrone and
estradiol were 10.3 and 10.7%, respectively. Inter-assay
C.V.s for E₁ and E₂ were 16.3 and 15.1%, respectively.

RESULTS

Cow 281 (Cow S) received twin embryos and twin
pregnancy was confirmed at day 30 by ultrasonography,
however, it gave birth to a single schistosomus reflexus
calf weighing 67.5 kg at 281 days of gestation. Cow 284
(Cow F) gave birth prematurely to a set of stillborn calves,
a male weighing 27.0 kg and a freemartin weighing 18.5
kg, at 254 days of gestation. In addition, it had a grossly
discoloured placenta, too. Coincidentally, cow F in a
preducing pregnancy gave birth to a live set of twins and
among these one was again a freemartin (the male was
42.5 kg and the female was 37.0 kg in weight at birth).
Cow 315 (Cow N) gave birth to two live male calves
weighing 42.0 and 32.0 kg, respectively, at day 279 of
gestation. Freemartin and schistosomus reflexus condition
were diagnosed by gross examination only.

The plasma P₄ profiles were identical in the PMSG
treated cows as shown in Fig. 1. In cow F the P₄
congestion abruptly declined around day 254 to < 1
ng/ml. On the other hand, the P₄ concentration in the
preducing pregnancy of this cow remained elevated up to
about day 280 but its plasma P₄ concentration was much
lower than the PMSG treated cows, as shown in Fig. 1. In
cows N and S, the plasma \(P_4 \) concentration rapidly declined as parturition approached and reached a concentration of \(< 1 \text{ ng/ml}\) on the day of parturition.

The plasma \(E_1 \) concentration increased rapidly from about days 60 to 100 in cow N compared to cows F and S as seen in Figs. 2a, 2b, and 3a. Cows F and N exhibited a linear increase in plasma \(E_1 \) concentration between days 100 to 250, whereas, cow S showed an undulating profile during the same period and it’s plasma \(E_1 \) concentration was lower than cow N (Figs. 2 and 3). Cow F showed a sudden upsurge in \(E_1 \) concentration at day 254 (parturition day) and then it declined dramatically on the subsequent day (Fig. 3a). However, the peak concentration attained on the day of parturition in this cow was less than that seen at parturition in cows N and S. On the other hand, cow F in the preceding pregnancy had a comparable profile to cow N between days 100 to parturition (Fig. 3b). Plasma \(E_1 \) concentration was markedly lower in cow S from days 250 to parturition than in cow N (Fig. 2).

The plasma \(E_2 \) profile paralleled the plasma \(E_1 \) profile in all the cows as shown in Figs. 2 and 3 but the plasma \(E_2 \) concentration throughout gestation was lower than the \(E_1 \) levels.

Plasma \(E_1 \) and \(E_2 \) levels declined to \(< 20 \text{ pg/ml}\) in cow N one day post-partum as opposed to \(> 150 \text{ pg/ml}\) \(E_1 \) and \(> 20 \text{ pg/ml}\) \(E_2 \) levels, respectively, in cows F and S (Figs. 2a, 2b, and 3a).

DISCUSSION

The corpus luteum is the main source of \(P_4 \) and is independent of fetal regulation throughout gestation in the cow although other organs have been implicated in contributing to the \(P_4 \) pool [2, 4, 7]. Furthermore, there is no evidence in the cow of a placental shift in \(P_4 \) production as has been reported in other species [19]. This is additionally substantiated by the similar plasma \(P_4 \) profiles of singleton and twin-bearing cows [2]. In the cow, \(P_4 \) concentration is commonly monitored to diagnose pregnancy but its accuracy is limited [6]. It has also been reported as a poor indicator of embryonic or fetal death in the buffalo [8], cow [2, 17] and pig [10]. In addition, the results of the present investigation further indicate (Fig. 1) that monitoring peripheral \(P_4 \) levels is of little pre-natal prognostic value in cattle and is of limited use in predicting the number of fetuses a cow is gestating after E.T. as illustrated by the similar plasma \(P_4 \) profiles of cows N and S.

The gradual increase in estrogen concentration throughout gestation to peak at parturition is characteristic of calving cows [1, 2, 4]. This progressive increase probably reflects the maturation of the placenta with the concomitant growth of the fetus. In humans, the fetus supplies 90% of the precursors for placental estrogen synthesis [5], as a result, monitoring of maternal estrogen profile allows indirect prediction of fetal well-being. Currently there is no evidence of fetal contribution to placental steroidogenesis in cattle though the genotype of the fetus has been reported to influence the amount of estrogen synthesized by the placental unit [15]. Aedelskou et al. [1] reported that low levels of unconjugated estrogen were characteristic of aborting cattle. Interestingly, similar findings have also been observed in aborting buffaloes [8]. In the pig, a relationship between the litter size and

![Fig. 3: Plasma \(E_1 \) (Δ) and \(E_2 \) (○) concentrations throughout gestation in (a) Cow F and (b) Cow F's preceding pregnancy. (■) indicates day of parturition (Day 0 = day of embryo transfer).](image-url)
Estrogen levels have been established [9]. Sreenan et al. [20] reported high levels of total estrogens in twin-bearing cows compared to singleton cows, whereas, Adelakoun et al. [1] only found significant differences in E2 levels between twin-bearing and singleton cows. Our findings indicate that E1 and E2 show parallel changes, although E2 concentrations were markedly lower throughout gestation than E1. Therefore, it is tempting to suggest that the low levels of plasma E1 and E2 in cow S throughout gestation after twin E.T. compared to cow N would indicate the possibility of differentiating singleton from twin-bearing cows and/or diagnosing fetal loss by the sequential monitoring of peripheral free estrogen concentrations. However, our results are based on individual cases, therefore there is a need for a more comprehensive study employing a larger number of animals to verify this. The cause of death of the fetuses in cow F was not exhaustively investigated except for the noting of the grossly discoloured placenta but interestingly, Echternakamp [4] reported that estrogens secreted by the placenta were correlated to the birth weight of the calf and that low peripheral levels were suggestive of a patho-physiological condition of the placenta. Apparently, the birth weights of the calves in cow F in the present study were approximately half at birth compared to cow N’s calves. However, in cow F’s preceding pregnancy the calf birth weights were comparable to cow N. Therefore, the possibility of placental compromise as a prime cause of low E1 and E2 levels and eventual death of the fetuses leading to premature birth rather than the abnormal genotype cannot be ruled out in cow F. Furthermore, Echternakamp [4] in an investigation of hormonal levels in multiple pregnancies of cows, noted no difference in the estrone sulphate levels between cows gestating normal and freemartin calves. On the other hand, our results indicate that the trend of the E1 and E2 plasma profile could be used for prognostic prenatal diagnosis of the in-utero fetus in cattle as substantiated by the disparate profiles of cows N and S. In addition, high E1 and E2 concentrations a day after parturition in cows F and S could be attributed to the retained placenta as high estrogen concentrations have been observed for several days in aborting cows with retained placenta [14, 17]. Therefore, characterization of E1 and E2 profiles could be useful in identifying cows gestating fetuses with multiple defects rather than just genotypic aberrations with little or no obvious phenotypic malformations.

To conclude, present results indicate that both E1 and E2 are better prognostic indicators than progesterone for gauging fetal in-utero status as well as the number of fetuses a cow is carrying. Further studies are needed to exploit the potential of monitoring estrogens in cows, as in humans, for prognostic prenatal diagnosis as it is essential to develop diagnostic procedures to identify dams with abnormal fetus(es) so as to induce selective abortion early in gestation. Furthermore, estrogens are secreted in vast amounts in milk and urine thus there is potential for developing simpler methods of monitoring their concentration for commercial application.

Acknowledgements. We thank Dr. N. Takenouchi, Chugoku National Agricultural Experiment Station, K. Iwama, Kyoritsu Shoji Co., Ltd., Dr. M. Kobayashi, Morinaga Milk Industry Co., Ltd., Dr. N. Kusakari, Takikawa Animal Husbandry Experiment Station and Dr. T. Iwahori, Shizuoka Prefectural Animal Husbandry Experiment Station for their assistance with sample collection; Dr. A. Kambegawa of Teikoku-zoki Pharmaceuticals Co., Ltd., for the gift of P4 anti- sera; T. Tomizuka and Dr. T. Kojima of the National Institute of Animal Industry for their expert help. O. V. Patel is currently on a Ph. D. fellowship from the Japanese Ministry of Education, Science and Culture (Monbusho).

References