Characteristics of Coherent Structure in Compound Open Channel Flow

Katsutoshi WATANABE, Yousuke TOKUMITSU, Yoshihiro NAGATA and Takanori SAGA

ABSTRACT
The characteristics of coherent structures formed over a flood plain in turbulent compound open channel flows were investigated using flow visualization techniques. The results of velocity measurements by PTV show that an oblique upward flow and a pair of large-scale secondary current are generated over the edge of the flood plain. It is clarified that large-scale longitudinal vortical structures exist over the edge of the flood plain for a long period of time. These vortical structures contribute directly to the generation of the instantaneous secondary current. Furthermore, it is also observed that large-scale horizontal vortical structure is formed over the flood plain.

Keywords: Compound open channel flow, Oblique upward flow, Longitudinal vortical structure Horizontal vortex

1. 緒 論
複断面開水路流れは、低水路内と高水数数以上の速度差のある2つの流れから構成され、その境界部では、複雑な流況を呈することが知られている。そこで、高水数先端部から低水路断面表面の流れを形成される斜昇流と鉛直方向に回転を有する水平渦という複断面流れ固有の流れ構造が形成されていることが明らかにされている。これらは大規模な二次流れを伴う構造であり、流れの支配的要素であることを、その詳細な内部流況の解明は、河川水工学や流体力学的にも重要と考えられる。

本研究では、複断面開水路流れの斜昇流と水平渦の内部流況を検討するために、一方の側面に高水数を設置した複断面開水路流れに形成される組織構造の特徴を流れの可視化法を用いて検討した。

2. 実験装置および方法
2.1 実験装置
実験には、Fig.1に示すような幅60cm、高さ25cm、長さ5mの透明アクリル樹脂板製の滑面開水路を使用し、水路勾配を1/1000に設定した。本水路の右側の低壁面上に、長さ1cm、幅1cm、高さ4cmの塩化ビニル樹脂板を上流から8mの間隔を置いて設置することにより複断面開水路とした。

2.2 実験方法
実験では、水路上流端より5m付近において流れ測定と流れの可視化を行った。流れ測定には、PTV(Particle Tracking Velocimetry)を用いた。トレーサーには微細粒子平均粒径15μm、比重1.04を、照明にはスライドプロジェクター(1KW)のスリット光査、厚さ約3mmを用いた。微細粒子を連続的に注入した後、Fig.2に示すように、水平断面あるいは縦断面での微細粒子の流動状況をビデオカメラで撮影した。流速データの解析ではFlow PTV(Flow studio)を用いて瞬時流速を求め、それらを統計処理することにより平均流速分布を求めた。可視化実験では、蛍光染料水溶液(比重1.005)を上流
3. 実験結果および考察

3.1 流速分布特性

PTVによって求められた主流速度（U）と二次流ベクトル（V, W）の重合図をFig.3に示す。Case E（H=8.0cm）では、高水深先端部に斜流流を伴った対を成す旋回状の二次流れの形成が明らかである。一方、Case B（H=5.0cm）では、斜流は小規模となり、旋回は水深が深い場合のように、二次流れが主に表面からの水塊の逆流を伴う流れに特徴がある。

3.2 流れの可視化結果

Fig.4には、各条件における高水深先端部に近い面の断面を示している。Case Aは水深が水深高さよりも低い条件における断面を示す。これは、径先端部に沿って流れの側壁付近の流れに相当しており、水表面と高水深の偏角部には堵壊構造の存在が観察された。
Fig. 4 End Views of Vortical Structure formed over the Flood Plain Edge

Fig. 5 Spatial-Temporal Image of Vortical Structure formed over the Flood Plain Edge (Case F)

高水位先端部に縦溝構造が形成され、その水平方向の顕著な伸張運動が観察された。Fig. 4 に示す Case G において横断面観の例である。高水位の水深が大きくなると、高水位の先端部の縦溝構造は長時間に亘って集中して形成されることが観察された。Case F における縦溝構造の時空間構造図を Fig. 5 に示す。図は高水位先端部に形成された縦溝構造の横断面断面を 5 秒間に亘って描き連ねたものであり、横断面形状 SW 1 ～ SW 5 に相当する縦溝構造が 2 つの個構造（LVS1, LVS2）から構成されていることを示している。このような縦溝構造の伴には比較的小規模な縦溝構造（縦溝断面）が若干で長時間に亘って形成されていることが観察された。また、これらの縦溝構造は、横断面内の二次流れの形成に寄与していることが推察されたが、Fig. 6 に示した横断面 DPTV の結果から実証された。

Fig. 7 には、高水位水深が比較的小さい Case B における水平断面観の経時変化を示している。水平断面スリットは水表面の極近くで y=0.8 cm に位置している。実験で
Fig. 7 Horizontal Plane Views in the vicinity of Flood Plain (Case B)

Fig. 8 Instantaneous Primary Velocity Profiles in Horizontal Plane (y=0.8cm, Case B)

は、彼女を脅迫する構造が流下しながら、横断方向の速度せん断の影響により、水平断面で大規模な回転運動（破線矢印）していることが観察された。これは、水平流に相当する大規模構造の断面形状であり、その通過に伴って横断方向の流れが生成され、ときに低水路から高水路の相対的に高速な流体（実線矢印）の輸送が顕著に認知された。この高速渦が高水路に進入する際に、前縁剥離によって高水路上に丸で囲んで示したような小規模な縦渦構造群が形成され、それが斜め方向に集め直し流状を呈する構造が生成されると観察された。水平流が高水路上に縦渦構造と関係していることは、高水路先端付近の横断面（Fig. 4 (b)）からも推察され、非常に興味深い。Fig. 8 には、同断面における瞬時主流流れ分布の経時変化を示している。高水路と低水路には明確な速度差が認められる。また、寒色で示された低速領域は前縁の水平渦の形成領域に対応していると考えられる。この上下流は、比較的高速の領域が前縁付近まで分布していることから、水平渦の運動による流体輸送が推察されるが、その詳細については今後の課題である。

4. 結論

本研究では、流れの可視化法を用いて片複断面開水路流れに形成された組織構造の特徴について検討した。その結果、高水路先端部には縦渦構造が時間的に安定し形成されることが明らかとなった。この構造は、高水路先端部に形成される二次流れの形成因となっている。また、高水路上には大規模な水平渦が形成される。本構造には、水平面での大規模な回転運動が認められ、それに伴う流体輸送が観察された。また、構造的な特徴として高水路上に形成される小規模な縦渦構造との関係が見出された。

謝辞：本研究は、平成19年度科学研究費助成金基盤研究（C）（課題番号：19580523、研究代表者：渡辺勝利）の助成を受けて行われた。記して謝意を示す。

参考文献

- 124 -