E107 大型トラック空力開発への小型風洞実験方法の検討*

山口 進作 飯塚 彰 (いすゞ自動車(株))、河合 一男 福田 亮 (株)いすゞ中央研究所
民部 俊貴 (東工学院大学大学院) 飯田 明由 (豊橋技術科学大学)

On the Study of Experimental Method for Aerodynamics of Heavy-Duty Trucks with a Small Wind Tunnel

Shinsaku YAMAGUCHI, Akira IIZUKA, Kazuo KAWAI, Ryo FUKUDA
Toshtaka MNBU and Akiyoshi IIDA

ABSTRACT
In order to modify aerodynamic properties of automobiles, wind tunnel experiments and numerical simulation have been conducted in industries. However, aerodynamic properties of heavy-duty trucks are not clearly. Because of the Reynolds number dependency of the flow around large vehicles. In this paper, we discuss the Reynolds number dependence of the flow around a heavy-duty truck and estimation method of aerodynamic properties with a small wind tunnel. In the case of actual flow around a truck, the flow is transit and the Reynolds number is over the critical numbers. To simulate this critical flow in a small wind tunnel, we introduce the turbulence grid. The flow fields around truck with and without turbulence grid are visualized with the PIV. The flow fields of the truck in the grid turbulence are almost the same as that of the critical Reynolds number.

Keywords: Visualization, Wind Tunnel, Aerodynamics, Heavy-Duty Truck.

1. 結論
近年、自動車の燃費向上はユーザの利便性のためだけではなく、地球温暖化(CO₂削減)や化石燃料の枯渇などの対策として有効なことから、自動車の空気抵抗低減に関する研究開発は以前にも増して重要になっている。

大型トラックは高速道路を利用した長距離輸送に用いられる機会が多く、走行抵抗に占める空気抵抗の割合が高い。そのため、燃費を向上する上で空気抵抗の軽減は効果的な手段と言える。

大型トラックの空力開発では、コンピュータシミュレーション(CFD:Computational fluid Dynamics)が盛んに活用されているが、風洞実験による確認はまだ欠不可な状況である。特に、キャビン前面のコーナー付近やルーフ前端などの曲面を通過する流れの特性が空力性能に大きく影響するため、これら曲面における流れの予測技術が特に重要となる。

大型トラックの風洞実験は、国内に大型トラックの実車による空力性能の評価が可能な超大型風洞が存在しないため、Reynolds数を合わせた実験が難しいという問題がある。特に、前述したキャビン各部の曲面による流れは、Reynolds数依存性が高く、開発初期に行う基本形状スタディの段階から大型模型風洞実験によりReynolds数を一致させておく必要がある。しかしながら、形状変更が頻繁に繰り返されるため、現実には実験効率の良い小型模型風洞実験に頼らざるを得ない。

図1の模式図に示すように、トラックのようなBluff Body周りの流れでは、臨界Reynolds数を超えると抵抗が急激に低下する現象が知られている。これまでの実験から、トラック周りの流れは、臨界Reynolds数以上となることが多い。

Fig.1 Relation of the drag coefficient to Reynolds Number
一方、小型模型を用いた風洞実験では、Reynolds 数は、臨界 Reynolds 数以下となる場合が多く、小型模型実験では、実車を模倣することは難しい。コストや実験のやり易さを考えると小型風洞を用いた実験が必要であり、大型風洞における高レイノルズ数流れを小型風洞中において模倣することが望まれている。

本報では、小型模型風洞実験において、トラック周りの流れを模倣することを目標として、乱流格子を用いた風洞実験結果を示す。

2. 実験方法

実験には図2に示すようなトラックのキャビンを単純化したモデルを使用した。Reynolds 数依存性を明らかにするため、大きさ2種類の風洞を用いた。また、風洞主流の乱れ強さは変えることにより、主流乱れの影響について調べた。

2.1 風洞設備

大型風洞は財団法人鉄道総合技術研究所の米原風洞技術センターにより製造されたが、小型風洞において実験では全測定に供した密閉型風洞を用いた。小型風洞はすこやかな自動車両の研究用風洞（もの1L実験、小型風洞と記す）である。小型風洞の測定数値部は3/4標準式である。

2.2 模型

実験には小型トラックキャビンの上半分を縮小して簡略化した模型を用いた。模型は大きさ2つの風洞の大きさに則った3体（以降、大型模型、小型模型と記す）である。図2に大型模型の略図及び寸法を示す。小型模型は小型模型の寸法を1/2に縮小したものである。これらはルーフ前面部の曲率半径（以降、Rと記す）を変更可能な構造であり、図1の1点線が普通の境界線である。また、幅方向の中心線上には、表面圧力計測用の圧力孔を設けた。Reynolds 数は式(1)により算出した。

\[
Re = \frac{U \cdot L \cdot \rho}{\mu}
\]

ここで、Re：Reynolds 数、U：風速[m/s]、L：模型の全長[m]、\rho：密度[kg/m³]、\mu：粘性係数[Pa·s]である。

2.3 小型風洞への模型の設置

模型と6分力天秤を接続するインターフェイスにより、風洞の測定部前面と模型前面の間隔を10mmとして、境界層による影響は最小に抑え、小型模型、大型模型共に、同一の条件下で実験を行った。

2.4 乱流格子

文献(5)を参考に小型風洞で乱流格子の実験を行った。実験に使用した乱流格子は直径φ2mm、格子間ピッチ20mm、これにより乱流の変動を模倣する。

3. 実験結果

3.1 Cd値と表面圧力分布の計測結果

図3に大型風洞及び小型風洞において取得されたトラックキャビン模様のCd値を示す。大型風洞で取得したCd値はReynolds 数の増加に対して急激に低下し、その後、安定している。この結果から臨界 Reynolds 数は1.5×10⁶付近に存在すると推定される。また、臨界 Reynolds 数付近の安定した実験条件であることを加え、ルーフ前面部の変形を模倣する。特に低い Reynolds 数領域における Cd 値のばらつきが大きい。一方、小型風洞に乱流格子を設置する前の状態におけるトラックキャビンのCd値はReynolds数が低く、臨界 Reynolds 数を超えた状態の Cd 値が得られていない。これに対して、乱流格子を設置した場合には、Reynolds 数の増加に伴ない Cd 値が緩やかに低下する傾向を示している。図4は大型模型の幅方向中心線上に配置した圧力孔で取得した圧力係数の分布図である。この図より Cd 値が急激に低下する臨界 Reynolds 数（1.5×10⁶付近）では、ルーフ前面部の曲率部分に著しい圧力のピーク（Cp=-3.5）が発生していることが分かる。

図5は乱流格子を設置した場合の小型模型の圧力係数分布図である。この図より Reynolds 数が高くなるにつれてルーフ前面部の曲率部分に負圧が発生し始め、Reynolds 数1.1×10⁶程度で負圧のピーク（Cp=-3.5）を
生じていることが分かる。

乱流格子を敷設した場合の流れを観察するため、事実上流側の Reynolds 数を超えた実験結果と良く一致している。

図9は各 Reynolds 数における無次元流速分布を示す。低い Reynolds 数では流れが平滑であるが、レイノルズ数が8.3×10^4に達すると流れは非線形に変化し、乱流状態となることが示されている。

以上の結果から、レイノルズ数が増加すると流れは非線形に変化し、乱流状態となることが示されている。

4. まとめ

乱流格子を敷設した場合の流れを観察するため、事実上流側の Reynolds 数を超えた実験結果と良く一致している。

図9は各 Reynolds 数における無次元流速分布を示す。低い Reynolds 数では流れが平滑であるが、レイノルズ数が8.3×10^4に達すると流れは非線形に変化し、乱流状態となることが示されている。

以上の結果から、レイノルズ数が増加すると流れは非線形に変化し、乱流状態となることが示されている。

4. まとめ

乱流格子を敷設した場合の流れを観察するため、事実上流側の Reynolds 数を超えた実験結果と良く一致している。

図9は各 Reynolds 数における無次元流速分布を示す。低い Reynolds 数では流れが平滑であるが、レイノルズ数が8.3×10^4に達すると流れは非線形に変化し、乱流状態となることが示されている。

以上の結果から、レイノルズ数が増加すると流れは非線形に変化し、乱流状態となることが示されている。

4. まとめ

乱流格子を敷設した場合の流れを観察するため、事実上流側の Reynolds 数を超えた実験結果と良く一致している。

図9は各 Reynolds 数における無次元流速分布を示す。低い Reynolds 数では流れが平滑であるが、レイノルズ数が8.3×10^4に達すると流れは非線形に変化し、乱流状態となることが示されている。

以上の結果から、レイノルズ数が増加すると流れは非線形に変化し、乱流状態となることが示されている。