Study of the Performance of Particle Tracking Methods by Computer Simulation

Abstract

Performances of a binary cross-correlation method (BCCM) are examined and compared to those of a four-sequential-image tracking method using computer simulation method. The ability of finding particle correspondences, correctness of those decisions, and the rate of measured particles are obtained.

As the results, it is concluded that the binary cross-correlation method seems to give reliable and much velocity vectors when the number density of dispersed tracers is high.

1. はじめに

流体中に混入した粒子運動を追跡して速度分布を測定するアルゴリズムのうち等時間間隔にサンプリングされた４画面から個々の粒子運動を測定する方法（４時刻追跡法**）と粒子の局所分布パターンの類似性から対応粒子を決定する方法（２値化相関法***）の特性を比較する。この２つの方法は前者が画像の時間的変化、後者が空間に分布した画像情報だけの互いに異なった画像情報を利用してっているため相補的なような特徴を持っている。

４時刻追跡法と２値化相関法のコンピューターシミュレーションによる性能比較はすでに加賀ら**が報告している。しかしながら、１）対応付けミスの処理については検討されておらず、また、２）画像のサンプリング時間間隔の影響や３）性能評価法などに関しても再評価が必要と思われる。今報では今後のアルゴリズムの改善の参考にすることを目的として、４時刻追跡法は時間軸方向に分布する画像情報、２値化相関法は空間に分布する情報だけを利用して時間系列画像間の粒子の対応付け性能を比較している。これらの方法の性能を検討することによって、測定対象の性質に応じて適切な解析を行う指針になると思われる。

2. ２値化相関法と４時刻追跡法の概要

* Faculty of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
** Faculty of Engineering, Fukui University, Fukui, Fukui, Japan
植村 知正, 水越 涉, 山本 富士夫, 本井 久之, 田中 昭二郎

2. 個化相関法は, 連続的に撮影された2枚の画像を2値化し, 第1画像の局所的な粒子分布パターンと最も類似した粒子パターンを第2画像から発見して粒子の対応を決定する方法である. 4時刻追跡法は一定時間間隔で取り込まれた連続した4枚の画面を通じてなるかに接続できる一連の粒子を対応粒子と見なす方法である.

3. シミュレーションの方法

3.1. 対象の流れと可視化画像. シミュレーションに用いた流れはFig.1に示したもの元急拡大流れ場のNavier-Stokes方程式の数値解析結果である.ここでは, a) 速度勾配のある流れ (Fig.1.a) と b) 同じ異なる流れ (Fig.1.b) の2種類の流れについて, a) トレーサ粒子の分布密度, と b) 画像のサンプリング時間間隔を変えて対応付け結果を調べた.

その流れ場に粒子を空間的にランダムに分布させて粒子画像を作成し, 粒子はその重心位置の速度で移動する粒子画像を作り出した. このような粒子画像の4時刻分を1組として画像解析のシミュレーションを行なったが, 特別な粒子配置による偏りを避けるために, 1つの条件について5組の異なった画像を解析した. なお, 粒子の寸法は3×3画素とした.

3.2. 画像のサンプリング時間間隔. ビデオ画像による画像計測を前提とすると,画像のサンプリング時間間隔の上限は1/60秒であり, この値が測定可能な速度の限界を決定している. このシミュレーション実験ではサンプリング時間間隔4τを共通の条件として2つの粒子追跡法の性能を比較した. すなわち, 画像条件を同一にするため, 連続した4画面を4時刻追跡法で解析した結果と2値化相関法による第1と第2, 第2と第3,第3と第4の2枚ずつ3対の解析結果の平均値を比較した. なお, 文献3では測定時間間隔が共通の条件, すなわち2値化相関法では3Δtの時間間隔の画像に対する対応付け性能を比較している.

3.3. 解析結果の検証. 解析結果の評価は既知の粒子対応と一致している程度を3個の指標で表わす. 2値化相関法では連続した3対の4画面間の解析を行いその平均値と4時刻追跡法の結果を比較した.

3.4. 誤対応の処理. これらの方法の対応付け結果には誤対応が含まれているので対応付け結果の検討と誤対応の検出修正が施される. 2値化相関法は著者らの一人が考案した誤対応処理法を採用している. 4時刻追跡法では第4画面が誤対応のチェック機能を担っているが, さらに何らの処理が施される. 標準的な4時刻追跡法による対応付けを行ってから, 周辺の速度と比較して大きく異なる速度ベクトルは除去する方法と発生した誤対応の半数を正しく修正するように処理を行う.

Fig.1 Model flows are taken from numerical analysis of 2D sudden expansion flow. a)Shear flow b)Circulated flow
4. 性能評価のための指標

a）対応付け率 R_n:
対応付け能力を評価する指標である。解析対象の画像中の対応付け可能な粒子数 \bar{n} に対して正しく対応付けられた粒子数 c の割合。

$$R_n = \frac{c}{\bar{n}}$$

b）正対応率 α:
対応付けられた結果の信頼性を評価する指標である。対応付けされた数 c' に対する正しく対応付けられた粒子数 c の割合。

$$\alpha = \frac{c}{c'}$$

c）粒子利用効率 η:
画像から得られる情報の有効利用の指標である。1画像あたりの平均粒子数 \bar{n} に対する正しく対応付けられた粒子数 c の割合。

$$\eta = \frac{c}{\bar{n}}$$

5. 結果

5.1 粒子分布密度の影響

i）せん断流の結果（Fig.2）
正方領域に換算した領域の一辺当たりの粒子数 m で粒子分布密度を表わす。パラメータ $\Delta \tau$ は、流れ場の最高流速で画像を横切る時間で画像取り込み時間間隔を無次元化したものである。

$$m = \sqrt{\frac{n}{\tau}}, \quad n: \text{粒子数}$$

粒子分布密度 $m < 20$ 程度までは、両方法ともにほとんど誤りなく全ての粒子を対応付けでいてある。2値化相関法は原理的に粒子分布密度が小さいと対応付け率が低下するが、$m < 6$ ではその傾向はなかった。粒子分布密度が高くなるに従い4時刻追跡法は対応付け率、正対応率とともに徐々に低下する傾向があるが、2値化相関法はある時点から急激に低下する。

ii）回転流れ
流れに回転が含まれると両方法ともに対応付け率が下がるが、2値化相関法の対応ミスの少ない。

5.2 画像サンプリング時間間隔の影響

1）対応付け率と正対応率（Fig.3a, 3b）
対応粒子が着目粒子に近いほど粒子の対応付けは易
しいと考え、最大流速での移動量の粒子間すきまに対する割合xで無次元画像取り込み時間

t
\[x = \Delta t \cdot \frac{V_{\text{max}}}{\sqrt{A/n}} \]

Δt: 画像取り込み間隔, A/n: 粒子1個当たりの占有面積

画像の時間間隔が大きくなると対応粒子間の距離が大きくなって対応付けが難しくなる相関法では、さらに粒子パターンの歪が大きくなる影響が加わって不利である。

せん断流れの場合をFig.4に示す。4時刻追跡法の場合は$x > 0.6$では対応付け率、正応率ともに低下し始める。

2) 粒子利用効率 (Fig.4)

4時刻追跡法では画像の時間間隔が大きくなると、
4枚の画像を通じて存在する粒子数が減るために粒子
利用効率は低下し始める。これに対し、2値化相関
法は2枚の画像で対応付けを行なうので粒子利用
効率は高い。

6. 結論

2値化相関法と4時刻追跡法を2種類の流れの測定に適応した場合の性能評価を行い、
次の結論を得た。

1) 画像中の粒子数が増えるにしたがって、また画像取り込み時間間隔が長くなるにしたがって、4時刻追跡法は性能低下、誤りが増加する。2値化相関法の方が相対的に性能低
下は起こりにくい。

2) 2値化相関法は対応付け率が下がる場合でも、正対応率の低下は少ない。

3) 粒子利用効率は一般に2値化相関法の方がよい。この傾向は画像サンプリング時間間
隔が大きいほど顕著である。

4) 粒子分布が粗な場合は2値化相関法は適さない。

7. 参考文献

1) 小林ほか、機論、55-509.B(1989),107。

2) 稲村・長谷川、流れる可視化、9-Suppl1(1986),35。

3) 加賀昭和ほか、空調衛生論、39(1989),77。

4) 河原ほか、機講論、894-2(1989),111。

5) 稲村ほか、流れる可視化、9-Suppl1(1989),35。