ツインビームによるレーザろう付性改善
——ロケットエンジンの LD レーザブレイジング（第 3 報）——
大阪大学大学院工学研究科 背本和俊、才田一幸、○宋 宇銘、菊野智教
宇宙開発事業団 白井 誠

Improvement in Laser Brazability using Twin Beam
—LD Laser Brazing of Rocket Engine (Report 3)—
by NISHIMOTO Kazutoshi, SAIDA Kazuyoshi, SONG Woohyun
KIKUNO Tomonori and SHIRAI Makoto

キーワード：LD レーザろう付、ツインビーム、耐熱貴金属ろう、ろう付間隙

Keywords：LD laser brazing, Twin beam, Heat-resisting precious filler metal, Brazeing clearance

1. 論言

本研究では、ロケットエンジンのろう付技術の高性能化・高信頼性化を目指し、半導体レーザ（LD レーザ）によるレーザブレイジング手法の確立を目的とした。本報告では、これまで示したシングルビームを用いたときのレーザろう付可能条件を拡大することを目的とし、ツインビームを用いた LD レーザろう付性について検討を行った。

2. 供試材料および実験方法

レーザろう付に用いた母材は板厚 1mm の Inconel 600 であり、その化学組成を Table 1 に示す。耐熱貴金属ろうとして、Au-18%Ni, Ag-10%Pd および Ag-21%Cu-25%Pd よう材（線径：0.5mm）を用いた。また、フラックスとして、ステンレス鋼銀ろう付用フラックス FS10SU を使用した。

レーザろう付には定格出力 2KW および 500W の半導体（LD レーザ）を用いた。Fig. 1 にレーザろう付方法を示す。両ビームを溶接方向と同軸上に位置させ、先行ビーム（定格出力 500W）で母材を予熱させた後、主ビーム（定格出力 2KW）でろう材を溶融させた。ビーム間距離は 4.7mm で、予熱ビームの入射角度は 47° で固定させた。レーザ走行速度 3mm/s、ろう材供給速度 20mm/s 一定にして、主ビームおよび先行ビームの出力を変化させた。

3. LD レーザろう付性に及ぼす予熱ビームの影響

3.1 レーザろう付部断面の様相

Inconel 600 の突合せレーザろう付において、ろう付間隙を変化させたときのろう付部断面を Fig. 2 に示す。前報 3 に示したシングルビームを用いたレーザろう付では、ろう付不能であった 0.2mm 以下のろう付間隙に対して、ツインビームを用いることによりろう付間隙内にろう材が完全に充填できることが明らかとなった。

Table 1 Chemical composition of base metal used (mass%)

<table>
<thead>
<tr>
<th>Alloy</th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Fe</th>
<th>Cr</th>
<th>Cu</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inconel 600</td>
<td>0.02</td>
<td>0.12</td>
<td>0.21</td>
<td>-</td>
<td>0</td>
<td>9.79</td>
<td>14.7</td>
<td>8</td>
<td>Bal.</td>
</tr>
</tbody>
</table>

Fig. 1 Schematic illustration of twin laser brazing
3.2 レーザろう付接着の引張強さ
ろう付間隙 0.1 および 0.2mm の突合せろう付接着の引張強さ（余盛削除）を広間隔ろう付接着の引張強さを合わせて Fig.3 に示す。Au-18%Ni ろう付では 0.1 および 0.2mm の間隔のろう付強さは 700MPa 程度であり、いずれも母材破断であった。Ag-10%Pd ろう付ではろう付間隔の減少に伴うう付強さが上昇し、ろう付間隔が 0.1mm では 450MPa に達する。いずれの条件においてもろう層破断であった。Ag-21%Cu-25%Pd ろう付では母材破断であり、ろう付間隔が 0.5mm 以下では、いずれも Inconel 600 母材強さを示すことがわかる。

4. レーザろう付部の温度分布
シングルビームとツインビームレーザろう付時の母材の温度分布を測定した結果、ツインビームを用いたレーザろう付の場合はシングルビームの場合と比べて、予熱ビームにより母材の表面温度が上昇し、ろう材の溶融温度以上に加熱される範囲が広くなったことがわかった。
これにより、ツインビームを用いたろう付の場合は、シングルビームを用いたろう付の場合より母材に
ぬれやすい状態になるため、溶融ろう材が間隙内に充填できたものと考えられる。以上のことから、ツインビームを用いたレーザろう付は、シングルビームを用いたレーザろう付に比べ、特に狭間隔のろう付条件においてろう付性が非常に改善できるものと判断される。

参考文献 1) 西本ら：溶接学会全国大会講演概要、第 72 集(2008) p 136-137