Identification of Geese, Swans and Ducks by the Barbule Structure of Feathers

Takashi Fujii*

Abstract. Variation in the barbule structure of the downy barbs of 30 species of Anseriformes occurring in Japan (six species of geese, one species of swan, and 23 species of ducks, including some domestic forms) was examined to confirm whether or not there were consistent differences among geese, swans and ducks. The distribution of the triangular nodes within one single barbule showed different tendencies among these three groups, although there was considerable overlap. The triangular nodes of ducks were clearly wider than those of geese and swans, but the latter two groups were mutually indistinguishable in this character. The barbules of swans were distinctly shorter than those of the other two groups. Similar tendencies were also found in the feathers of the domestic forms. Thus, this study suggests that it is possible to distinguish among geese, swans and ducks based on the barbule structure. This study also showed that the triangular nodes were absent in primary feathers, alula, primary-coverts, axillaries and very small feathers around the beak in most of examined species. Some species also lacked the triangular nodes in feathers around the oil gland, secondary and tertiary feathers and greater wing-coverts. In fledglings, all of the body feathers lacked the triangular nodes.

Key words: Anseriformes, Downy barbs, Identification of feathers, Nodal structure, Triangular node.

はじめに

方法

1) 分析に用いる構造について

分析に使用するのは上脇 (superior umbilicus) 付近の綿状羽枝 (downy barbs) で、その中にある小羽枝 (barbule) の節 (nodes) が識別点となる (Fig. 1)。カモ目の上脇付近の節構造は特異的な三角形又はハート形をしており、以下の三角形の節、この三角形の節の有無で、カモ目とそれ以外の目を識別することが可能である (Chandler 1916)。ただし、太田ほか (2004) はカモ目以外にも三角形に見える節があることを指摘しており、識別の際には三角形の節が小羽枝の先端に偏っている点にも注目する必要があるとしている。

2) 対象種と調査方法

三角形の節の位置

日本鳥類目録 (日本鳥類目録編集委員会 2000) に掲載されているカモ目 52 種の内、ガン類 6 種、ハクチョウ類 1 種、カモ類 23 種の計 30 種と、家禽類のガチョウとアヒルを調査の対象とした (Table 1)。これに加えて、ハクチョウ類はサンプルは少ないため、野外で拾得した種不明のハクチョウ類の羽根も参考として使用した。

調査に使用する羽根は、野外で拾得したもののか、動物園や傷病施設に死体として保管されているものの、及び剥製等の標本からも採取した。サンプルの産地は国内に限定せず、日本鳥類目録に掲載されている種と同種であれば、外国産のものも対象とした。

身体の部位ごとの違いを調べるため、風切羽 (初列風切、次列風切、三列風切)、小翼羽、雨覆羽 (初列雨覆、大雨覆等)、腋羽、尾羽、体羽 (頭頂から胸、腹から背、背から腰、上尾筒、下尾筒) について、それぞれ複数枚採取して観察を行った。全ての種類の羽根を網羅でき
なかった種についても、収集できた部位のみで調査を行うこととした。
収集したそれぞれの羽根から上瞼付近の縦状羽枝を複数本採取し、封入剤等を使わず、乾燥状態のプレパラート（以下、ドライスライド）を作成した。これを光学顕微鏡で40から100倍に拡大し、接眼マイクロメータを使って三角形の節の有無を調べ、節がある場合には、1本の小羽枝の中のどの位置に見られるかを調査した。この三角形の節の位置についてPrast & Shamoun (1997) は、カモ類は小羽枝の先端から約30%以内の位置に寄り固まっているが、ガン類は約30〜60%の位置にまで広がり、ハクチョウ類は約60%以上の位置にまで到達すると報告している。プレパラート上の小羽枝をまっすぐな状態にするのは難しく、定量的な計測が困難であるため、調査は目測でこれを検証する形で行った。

体羽の三角形の節の大きさ
収集したサンプルの中から、ガン類の代表として、野生種の中からガン Anser albi frons とヒシクイ（亜種オオヒシクイ）A. fabalis middendorffii, 家禽類のシナガチョウ A. cygnoides var. domesticus を対象とした。ハクチョウ類の代表としては、コハクチョウ Cygnus columbianus を選んだ。カモ類については、普通種の中からオオドリ Aix galericulata, マガモ Anas platyrhynchos, カルガモ A. poecilorhyncha, 小型種としてコガモ A. crecca, 潜水性の種としてシノリガモ Histrionicus histrionicus, 家禽類からハシラ Anas platyrhynchos var. domesticus を代表に選んだ。それぞれ胸部、腹部、背部各2枚の体羽から上瞼付近の縦状羽枝を複数本採取してドライスライドを作成し、光学顕微鏡で200倍に拡大して節の横幅を計測した (Fig. 2)。計測は Nikon コントロールユニット DS-L2 を用いて行った。ただし、サンプル数の不足のため、オオヒシクイの背部は1枚の羽根のみを調べ、シナガチョウの背部は調査を行わなかった。Horton (1990) は、計
Table 1. Examined species of Anseriformes and distributions of the characteristic triangular nodes within one single barbule. ♂: male, ♀: female, U: unknown, Ad: adult, Juv: juvenile, Fl: fledgling, A: covering less than 30% of the total barbule length, B: covering 30%–60% of the total barbule length, C: covering more than 60% of the total barbule length, ×: no observed triangular nodes, −: no sample, A:’ covering less than 30% of the total barbule length although few nodes, B:’ covering 30%–60% of the total barbule length although few nodes, C:’ covering more than 60% of the total barbule length although few nodes, O: collected in countries other than Japan, J: collected in Japan, S: data gathered from study skins, L: data gathered from dropped feathers, DB: data gathered from dead body, NE: not examined, E: examined.

<table>
<thead>
<tr>
<th>No.</th>
<th>Group</th>
<th>Scientific name</th>
<th>Sex</th>
<th>Age</th>
<th>Primary coverts</th>
<th>Lesser greater wing-coverts</th>
<th>Primary coverts</th>
<th>Lesser greater wing-coverts</th>
<th>Scapulars</th>
<th>Axillaries</th>
<th>Tail to crown of neck</th>
<th>Breast to flank</th>
<th>Back to rump</th>
<th>Upper tail covert to covers</th>
<th>Under tail covert covers</th>
<th>Country</th>
<th>Source</th>
<th>Examinations of size of nodes</th>
<th>Finer investigations about where feathers with triangular nodes were found on the body.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Goose</td>
<td>Branta canadensis</td>
<td>U</td>
<td>Juv</td>
<td>−</td>
<td>O</td>
<td>S</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td>2</td>
<td>Anser albifrons</td>
<td>U</td>
<td>U</td>
<td>B</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>J</td>
<td>L</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td>3</td>
<td>A. erythropus</td>
<td>U</td>
<td>U</td>
<td>×</td>
<td>B’</td>
<td>×</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>B</td>
<td>B</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td>4</td>
<td>A. fabalis</td>
<td>U</td>
<td>U</td>
<td>−</td>
<td>O</td>
<td>S</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td>5</td>
<td>A. coerebeorum</td>
<td>U</td>
<td>U</td>
<td>×</td>
<td>B’</td>
<td>−</td>
<td>O</td>
<td>S</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td>6</td>
<td>A. canagica</td>
<td>♂</td>
<td>Juv</td>
<td>−</td>
<td>O</td>
<td>S</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td>7</td>
<td>A. cygnoides var.</td>
<td>U</td>
<td>U</td>
<td>−</td>
<td>B</td>
<td>−</td>
<td>O</td>
<td>S</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td>8</td>
<td>Anas platyrhynchos</td>
<td>♂</td>
<td>Juv</td>
<td>−</td>
<td>S</td>
<td>J</td>
<td>DB</td>
<td>NE</td>
</tr>
<tr>
<td>9</td>
<td>Swans</td>
<td>Cygnus columbianus</td>
<td>U</td>
<td>Juv</td>
<td>×</td>
<td>S</td>
<td>J</td>
<td>DB</td>
</tr>
<tr>
<td>10</td>
<td>Cygnus sp.</td>
<td>U</td>
<td>Ad</td>
<td>−</td>
<td>J</td>
<td>L</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td>11</td>
<td>Ducks</td>
<td>Anas poecilorhyncha</td>
<td>♂♂</td>
<td>Ad</td>
<td>−</td>
<td>×</td>
<td>J</td>
<td>DB</td>
<td>NE</td>
</tr>
<tr>
<td>12</td>
<td>♂♂</td>
<td>Ad</td>
<td>−</td>
<td>−</td>
<td>×</td>
<td>J</td>
<td>L</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td>13</td>
<td>♂♂</td>
<td>U</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>−</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>NE</td>
</tr>
<tr>
<td>14</td>
<td>♂♂</td>
<td>Ad</td>
<td>−</td>
<td>−</td>
<td>×</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>NE</td>
</tr>
<tr>
<td>15</td>
<td>♂♂</td>
<td>Ad</td>
<td>−</td>
<td>−</td>
<td>×</td>
<td>×</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>NE</td>
</tr>
<tr>
<td>16</td>
<td>♂♂</td>
<td>Ad</td>
<td>−</td>
<td>−</td>
<td>×</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>NE</td>
</tr>
<tr>
<td>17</td>
<td>♂♂</td>
<td>U</td>
<td>×</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>NE</td>
</tr>
<tr>
<td>18</td>
<td>♂♂</td>
<td>Ad</td>
<td>−</td>
<td>−</td>
<td>×</td>
<td>×</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>NE</td>
</tr>
<tr>
<td>19</td>
<td>♂♂</td>
<td>Ad</td>
<td>−</td>
<td>−</td>
<td>×</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>NE</td>
</tr>
<tr>
<td>20</td>
<td>♂♂</td>
<td>U</td>
<td>Fl</td>
<td>−</td>
<td>J</td>
<td>S</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td>21</td>
<td>♂♂</td>
<td>Ad</td>
<td>−</td>
<td>−</td>
<td>×</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>NE</td>
</tr>
<tr>
<td>22</td>
<td>♂♂</td>
<td>Ad</td>
<td>−</td>
<td>J</td>
<td>S</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td>23</td>
<td>♂♂</td>
<td>U</td>
<td>×</td>
<td>J</td>
<td>S</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td>24</td>
<td>♂♂</td>
<td>Ad</td>
<td>−</td>
<td>×</td>
<td>J</td>
<td>S</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td>25</td>
<td>Anas platyrhynchos</td>
<td>♀</td>
<td>U</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>–</td>
<td>A</td>
<td>O</td>
</tr>
<tr>
<td>26</td>
<td>A. falcata</td>
<td>♀</td>
<td>Ad</td>
<td>×</td>
<td>A′</td>
<td>×</td>
<td>×</td>
<td>A</td>
<td>×</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>O</td>
<td>S</td>
<td>NE</td>
</tr>
<tr>
<td>27</td>
<td>A. strepera</td>
<td>♀</td>
<td>U</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>A</td>
<td>–</td>
<td>A</td>
<td>–</td>
<td>O</td>
<td>S</td>
</tr>
<tr>
<td>28</td>
<td>A. penelope</td>
<td>♀</td>
<td>U</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>–</td>
<td>–</td>
<td>J</td>
<td>S</td>
</tr>
<tr>
<td>29</td>
<td>U</td>
<td>×</td>
<td>×</td>
<td>A</td>
<td>×</td>
<td>×</td>
<td>A</td>
<td>×</td>
<td>A′</td>
<td>×</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>J</td>
<td>S</td>
</tr>
<tr>
<td>30</td>
<td>Juv</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>A</td>
<td>×</td>
<td>A′</td>
<td>×</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>J</td>
<td>S</td>
<td>NE</td>
<td>○</td>
</tr>
<tr>
<td>31</td>
<td>A. acuta</td>
<td>♀</td>
<td>U</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>–</td>
<td>A</td>
<td>J</td>
<td>S</td>
</tr>
<tr>
<td>32</td>
<td>U</td>
<td>×</td>
<td>A′</td>
<td>×</td>
<td>×</td>
<td>A</td>
<td>×</td>
<td>A</td>
<td>A</td>
<td>×</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>–</td>
<td>–</td>
<td>J</td>
</tr>
<tr>
<td>33</td>
<td>U</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>–</td>
<td>A</td>
<td>–</td>
<td>J</td>
<td>S</td>
</tr>
<tr>
<td>34</td>
<td>A. querquedula</td>
<td>♀</td>
<td>U</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>–</td>
<td>A</td>
<td>J</td>
<td>S</td>
</tr>
<tr>
<td>35</td>
<td>A. clapeta</td>
<td>♀</td>
<td>U</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>–</td>
<td>A</td>
<td>J</td>
<td>S</td>
</tr>
<tr>
<td>36</td>
<td>U</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>A</td>
<td>×</td>
<td>A′</td>
<td>×</td>
<td>A′</td>
<td>×</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>J</td>
<td>S</td>
<td>NE</td>
</tr>
<tr>
<td>37</td>
<td>Aythya ferina</td>
<td>♀</td>
<td>U</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>–</td>
<td>J</td>
<td>S</td>
</tr>
<tr>
<td>38</td>
<td>♀</td>
<td>Ad</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>–</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>–</td>
<td>–</td>
<td>J</td>
<td>S</td>
<td>NE</td>
</tr>
<tr>
<td>39</td>
<td>A. collaris</td>
<td>♀</td>
<td>U</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>–</td>
<td>–</td>
<td>O</td>
<td>S</td>
<td>NE</td>
</tr>
<tr>
<td>40</td>
<td>A. fehlenga</td>
<td>♀</td>
<td>Juv</td>
<td>×</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>41</td>
<td>U</td>
<td>×</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>–</td>
<td>J</td>
<td>S</td>
<td>NE</td>
</tr>
<tr>
<td>42</td>
<td>A. marila</td>
<td>♀</td>
<td>Juv</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>J</td>
<td>DB</td>
<td>NE</td>
</tr>
<tr>
<td>43</td>
<td>U</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>A</td>
<td>×</td>
<td>A′</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>–</td>
<td>J</td>
<td>S</td>
<td>NE</td>
</tr>
<tr>
<td>44</td>
<td>U</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>–</td>
<td>J</td>
<td>DB</td>
<td>NE</td>
</tr>
<tr>
<td>45</td>
<td>Melanitta nigra</td>
<td>♀</td>
<td>U</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>–</td>
<td>J</td>
<td>S</td>
</tr>
<tr>
<td>46</td>
<td>♀</td>
<td>Ad</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>A</td>
<td>×</td>
<td>A′</td>
<td>A</td>
<td>×</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>J</td>
<td>S</td>
</tr>
<tr>
<td>47</td>
<td>Histrionicus histrionicus</td>
<td>♀</td>
<td>U</td>
<td>–</td>
<td>A′</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>–</td>
<td>J</td>
<td>S</td>
<td>○</td>
</tr>
<tr>
<td>48</td>
<td>♀</td>
<td>Ad</td>
<td>×</td>
<td>A</td>
<td>A</td>
<td>×</td>
<td>×</td>
<td>A</td>
<td>×</td>
<td>A′</td>
<td>A</td>
<td>×</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>J</td>
<td>S</td>
</tr>
<tr>
<td>49</td>
<td>Clangula hyemalis</td>
<td>♀</td>
<td>Ad</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>A</td>
<td>×</td>
<td>A′</td>
<td>A</td>
<td>×</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>J</td>
<td>S</td>
</tr>
<tr>
<td>50</td>
<td>Bucephala clangula</td>
<td>♀</td>
<td>Juv</td>
<td>×</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>–</td>
<td>–</td>
<td>O</td>
<td>S</td>
<td>NE</td>
</tr>
<tr>
<td>51</td>
<td>B. albeola</td>
<td>♀</td>
<td>Juv</td>
<td>×</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>×</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>–</td>
<td>–</td>
<td>O</td>
<td>S</td>
</tr>
<tr>
<td>52</td>
<td>Mergus albellus</td>
<td>♀</td>
<td>Ad</td>
<td>×</td>
<td>A′</td>
<td>A′</td>
<td>×</td>
<td>×</td>
<td>A</td>
<td>×</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>J</td>
<td>S</td>
<td>NE</td>
<td>○</td>
</tr>
<tr>
<td>53</td>
<td>♀</td>
<td>Ad</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>J</td>
</tr>
<tr>
<td>54</td>
<td>♀</td>
<td>Ad</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>U</td>
<td>S</td>
<td>NE</td>
</tr>
<tr>
<td>55</td>
<td>M. squamatus</td>
<td>♀</td>
<td>U</td>
<td>×</td>
<td>A′</td>
<td>A</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>A</td>
<td>–</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>J</td>
</tr>
<tr>
<td>56</td>
<td>♀</td>
<td>U</td>
<td>×</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>O</td>
<td>S</td>
</tr>
<tr>
<td>57</td>
<td>Anas platyrhynchos</td>
<td>♀</td>
<td>Ad</td>
<td>×</td>
<td>A</td>
<td>×</td>
<td>×</td>
<td>A</td>
<td>×</td>
<td>A′</td>
<td>A′</td>
<td>×</td>
<td>A′</td>
<td>×</td>
<td>A′</td>
<td>–</td>
<td>–</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

(Crown)

(Nick)
測する節を小羽枝の最も基部側の節としていたが、同じ1枚の羽根でも小羽枝ごとに基部の節の大きさにかなりのばらつきがあるため、本報告では、1本の小羽枝の中で最も横幅の広い節を計測することとし、体羽1枚につき50個の節を計測した。なお、節の形状が未発達で、小さな節しか持たない小羽枝は対象外とした。また、オオヒシクイの背部については1枚の羽根から100個の節を計測した。

三角形の節が欠如する部位
収集したサンプルの中で、1個体分の羽根が全て利用可能な個体を対象として、三角形の節が身体のどの部位で欠如するかを調査した。対象とした個体をTable 1に示した。観察を行った羽根は、節の位置について調査した部位のみに限定せず、嘴の周り、目の周りの小さな羽根や、頚、喉、前縁雨覆、脂腺の周り、脛などからも採取し、身体全体を網羅できるように努めた。

結果

1) 三角形の節の位置
同じ1枚の羽根であっても、観察する小羽枝ごとに三角形の節の位置に若干の違いが見られたが、全体的な傾向はTable 1に示した通りであった。ガン類は、三角形の節の位置が小羽枝の先端から30〜60%の範囲にまで広く分散している小羽枝が大半であったが、一部、30%以内に収まるものや、逆に60%を超えて分散しているものもあった。これらの特徴は、家禽類のシナガチョウでも同様に確認された。ハクチョウ類は、ガン類に同様に三角形の節は分散しており、全体の傾向としては小羽枝の先端から60%以上の範囲にまで到達しているが、ガン類と同様に、一部、60%以内に収まっている小羽枝もみられた。なお、ハクチョウ類は小羽枝の長さがカモ類やガン類と比較して顕著に短いという特徴がみられた。カモ類は、三角形の節の位置
Fig. 3. Differences in the distributions of nodes within one single barbule among geese, swans and ducks.

はいずれも小羽枝の先端に偏って寄り固まり，全体の傾向として小羽枝の先端から 30% 以内の範囲に収まっていた。ただし，一部，短い小羽枝では節の位置が 30% の範囲内に収まらないものもあった。特に頭部の小さな羽根では，小羽枝が短くその傾向が顕著にみられた。なお，三角形の節が小羽枝の先端に偏って集中しているという点は，ガン類，ハクチョウ類とは異なる点であった。これらの特徴は，家禽類のアヒルでも同様に確認された。各グループの節構造の位置の特徴を Figure 3 に示した。

2) 体羽の三角形の節の大きさ

三角形の節の横幅の計測結果を Table 2 に，データを 1 μm (0.001) ごとの区間別に集計したヒストグラムを Figure 4 に示した。平均値と標準偏差はカモ類が 19.79 ± 1.89 μm，ガン類が 15.03 ± 1.43 μm，ハクチョウ類が 14.51 ± 1.77 μm であり，カモ類の平均が顕著に大きかった。カモ類とガン類，カモ類とハクチョウ類の差は有意であった (Tukey's Studentized Range (HSD) Test, P < 0.05)。また，Figure 4 でカモ類のデータが最も多く含まれていた 19 μm の区間を基準にして，それよりも幅の広い節の数を比較すると，カモ類は全体の 68.0% であるのに対して，ガン類は 0.4%，ハクチョウ類は 1.0% と，ガン類，ハクチョウ類では 19 μm よりも幅の広い節はほとんど確認できなかった。なお，ガン類とハクチョウ類については，有意な差が認められなかった。
Table 2. Measurements of the width of nodes.

<table>
<thead>
<tr>
<th>Group</th>
<th>Species name</th>
<th>Parts</th>
<th>N</th>
<th>Mean ± SD (μm)</th>
<th>Min (μm)</th>
<th>Max (μm)</th>
<th>>19 μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geese</td>
<td>Anser albinrons</td>
<td>Breast</td>
<td>100</td>
<td>14.87±1.15</td>
<td>12.07</td>
<td>17.72</td>
<td>0 0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Belly</td>
<td>100</td>
<td>14.77±1.42</td>
<td>11.20</td>
<td>17.72</td>
<td>0 0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Back</td>
<td>100</td>
<td>15.25±1.36</td>
<td>12.51</td>
<td>19.02</td>
<td>1 1.0</td>
</tr>
<tr>
<td></td>
<td>A. fabalis middendorfi</td>
<td>Breast</td>
<td>100</td>
<td>15.65±1.36</td>
<td>12.51</td>
<td>18.59</td>
<td>0 0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Belly</td>
<td>100</td>
<td>16.02±1.45</td>
<td>12.51</td>
<td>19.46</td>
<td>2 2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Back</td>
<td>100</td>
<td>14.59±1.16</td>
<td>12.07</td>
<td>17.28</td>
<td>0 0.0</td>
</tr>
<tr>
<td></td>
<td>A. cygnoides var. domesticus</td>
<td>Breast</td>
<td>100</td>
<td>14.52±1.53</td>
<td>10.77</td>
<td>18.59</td>
<td>0 0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Belly</td>
<td>100</td>
<td>14.58±1.22</td>
<td>11.20</td>
<td>14.58</td>
<td>0 0.0</td>
</tr>
<tr>
<td>Swans</td>
<td>Cygnus columbianus</td>
<td>Breast</td>
<td>100</td>
<td>18.66±1.48</td>
<td>15.55</td>
<td>23.37</td>
<td>43 43.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Belly</td>
<td>100</td>
<td>19.96±1.40</td>
<td>16.85</td>
<td>23.80</td>
<td>79 79.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Back</td>
<td>100</td>
<td>19.66±1.44</td>
<td>16.42</td>
<td>23.37</td>
<td>71 71.0</td>
</tr>
<tr>
<td>Ducks</td>
<td>Aix galericulata</td>
<td>Breast</td>
<td>100</td>
<td>19.72±1.97</td>
<td>14.68</td>
<td>23.80</td>
<td>64 64.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Belly</td>
<td>100</td>
<td>20.37±1.54</td>
<td>16.42</td>
<td>23.37</td>
<td>85 85.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Back</td>
<td>100</td>
<td>20.59±1.68</td>
<td>16.85</td>
<td>25.54</td>
<td>90 90.0</td>
</tr>
<tr>
<td></td>
<td>Anas platyrhythchos</td>
<td>Breast</td>
<td>100</td>
<td>20.36±1.88</td>
<td>16.42</td>
<td>25.97</td>
<td>81 81.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Belly</td>
<td>100</td>
<td>21.40±2.33</td>
<td>14.24</td>
<td>26.41</td>
<td>87 87.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Back</td>
<td>100</td>
<td>21.62±2.28</td>
<td>16.85</td>
<td>26.84</td>
<td>86 86.0</td>
</tr>
<tr>
<td></td>
<td>A. poecilorhythchos</td>
<td>Breast</td>
<td>100</td>
<td>19.78±1.52</td>
<td>16.42</td>
<td>23.37</td>
<td>70 70.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Belly</td>
<td>100</td>
<td>19.40±1.64</td>
<td>16.42</td>
<td>25.10</td>
<td>65 65.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Back</td>
<td>100</td>
<td>19.86±1.66</td>
<td>15.98</td>
<td>25.10</td>
<td>71 71.0</td>
</tr>
<tr>
<td></td>
<td>Histrionicus histrionicus</td>
<td>Breast</td>
<td>100</td>
<td>18.36±1.34</td>
<td>14.68</td>
<td>22.50</td>
<td>37 37.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Belly</td>
<td>100</td>
<td>18.64±1.44</td>
<td>16.42</td>
<td>22.50</td>
<td>41 41.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Back</td>
<td>100</td>
<td>18.23±1.45</td>
<td>15.55</td>
<td>22.06</td>
<td>32 32.0</td>
</tr>
<tr>
<td></td>
<td>Anas platyrhythchos var. domesticus</td>
<td>Breast</td>
<td>100</td>
<td>19.69±1.62</td>
<td>16.42</td>
<td>25.10</td>
<td>70 70.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Belly</td>
<td>100</td>
<td>20.16±1.49</td>
<td>16.42</td>
<td>23.37</td>
<td>82 82.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Back</td>
<td>100</td>
<td>19.82±1.49</td>
<td>17.28</td>
<td>23.80</td>
<td>70 70.0</td>
</tr>
</tbody>
</table>

められたものの (Tukey's Studentized Range (HSD) Test, P<0.05), レンジは大きく重なっており (Fig. 4), 識別点として利用することはできなかった。家禽類については, シナガチョウはガニ類の野生種 2 種と, アヒルはマガモとの比較を行った。ガニ類, カモ類のいずれについても, 分散分析によれば有意差が認められるが (ガニ類: ANOVA, F=6.667, df=1,798, P<0.0001, カモ類: ANOVA, F=10.935, df=1,598, P<0.05), レンジは大きく重なっていた (Fig. 5)。なお, 部位による違いについては, ガニ類, ハクチョウ類, カモ類のそれぞれにおいて, 胴部, 腹部, 背部の間の差を分散分析で比較した結果, ガニ類は 5% 水準でも部位間に有意差が認められなかった。ハクチョウ類は 0.1% 水準で有意差が認められ, レンジは部位ごとに若干分離していた。カモ類についても 0.1% 水準で有意差が認められたが, 各部位の測定値のレンジは
Fig. 4. A histogram of the width of nodes constructed for every 1 μm (0-0.99) showing differences among geese, swans and ducks.

Fig. 5. Histograms of the width of nodes constructed for every 1 μm (0-0.99) showing differences between wild and domestic forms of (A) geese and (B) ducks.
3) Area Differences Among Body Parts

Fig. 6. Histograms of the width of nodes constructed for every 1 μm (0.99) showing differences among the breast, the belly and the back in (A) geese, (B) swans and (C) ducks.
半続羽や緑羽では、三角形の節が顕著にみられた。また、次列風切や大雨覆では、三角形の節が欠如又は少ないなど、形状が不安定なものもあり、種間だけでなく、個体によっても状態が異なっていた。体羽では、脂腺の周りで三角形の節が欠如している種があったほか、ハシビロガモ Anas clypeata においては頭部においても三角形の節を確認することができなかった。また、目先や黒、喉など、嘴の周りの小さな羽根では、三角形の節が欠如していた。そのほか、今回の調査ではカルガモの雌の羽根も調査したが、雌では、一部未発達な節が見られる部位もあるが、完全に発達した節は身体のどの部分についても確認することができなかった。

論　議

1) ガン類、ハクチョウ類、カモ類の識別

カモ目の羽根をガン類、ハクチョウ類、カモ類に識別するにあたって、Horton (1990) と Prast & Shamoun (1997) を参考に調査を行ったが、ガン類とハクチョウ類を識別するには課題が残った。カモ類においては、三角形の節が小羽枝の先端に偏り、小羽枝全体の 30% 以内に集中する傾向があるという点と、19 μm よりも幅の広い節が多く見られるという点で識別できると推測された。しかし、ガン類とハクチョウ類においては、節の位置では Prast & Shamoun (1997) と同様の傾向を確認できたが、ガン類の小羽枝の中には、三角形の節が全体の 60% を越えて分散しているものが一部あったほか、ハクチョウ類の小羽枝には節が 60% 以内に収まるものも見られた。節の幅においても、Horton (1990) とは計測する位置を変えたが、ハクチョウ類とガン類の間には識別に利用できるほどの顕著な差がみられないという点では同様の結果となったため、ガン類とハクチョウ類を節の位置と大きさのみで明確に識別することは困難であると考えられた。ただし、Prast & Shamoun (1997) は、コブハクチョウ Cygnus olor の小羽枝がガン類、カモ類よりも短いとしており、実際に本調査でもハクチョウ類でその傾向を確認している。小羽枝の長さを定量的に測ることは困難であることから本報告では計測を行っていなかったが、目測でも小羽枝の長短を把握することは可能であったため、この点も考慮して全体の傾向を把握するようにすれば、ガン類とハクチョウ類も識別は可能と推測された。しかし、目測では常に正確な識別ができるとは断言できないため、今後はこれを定量化していく必要がある。

2) 三角形の節が欠如する部位

翼では、初列風切や初列雨覆、小翼羽で三角形の節が欠如している場合が多く、そのほかの部位においても、小羽枝の形状は不安定で、三角形の節が少ない又は欠如している場合があっ

た。このような形状が不安定な部位では、各グループの特徴を確認する可能性もあるため、カ

モ類のような顕著な特徴が確認された場合を除き、これらの部位の羽根により識別を試みるこ

とは適切ではないと思われた。ただし、翼上下面の小・中雨覆、肩羽においては、三角形の節

が比較的安定して見られたため、グループの識別は可能と思われた。体羽では、ほとんどの部

位で三角形の節が確認されたが、嘴周りの小さな羽根には三角形の節が確認できなかったほ

か、脂腺の周りで三角形の節が欠如している場合があった。このように、三角形の節が欠如

していた場合や、小さく顕著にみられない場合は、誤認につながる恐れがあるため、体羽を識

別に用いる際には注意が必要と考えられた。また、今回の報告ではカルガモの雌も調査したが、
離では三角形の構造を確認することができなかった。ただし、この雌の羽根は半綿羽であり正羽はほとんど見られなかったため、幼羽で三角形の節が欠如する傾向があるかどうかは不明であった。

3）身体の部位による節の位置、大きさの違い

節の位置においては、初列風切のように三角形の節が確認されなかった部位を除き、調査した各部位で同様の結果が得られた。節の大きさについても、調査した胸部、腹部、背部の間に、ガン類、カモ類では計測値に顕著な差が無く、部位間のレンジの重なりは大きかった。調査した部位が3箇所のみで局部的であるが、ガン類、カモ類においては、部位間の節の大きさの違いは小さいと推測された。なお、ハクチョウ類では部位によって計測値に若干の違いがあったが、どの部位の羽根についても、カモ類よりも節の大きさが顕著に小さいという点では同様の傾向を示していた。よって、ガン類、カモ類、ハクチョウ類の各グループの識別は、体羽や翼下表面の小・中雨覆、肩羽のように三角形の節が安定して見られる部位であれば、どの部位でも可能と思われた。

4）家禽類について

カモ目の鳥が品種改良されて家禽化したものは、大きくわけてガチョウとアヒルがいる。ガチョウはハイローゲン Anser anser やサカツラガシ A. cygnoides を品種改良していることからガン類に、アヒルはマガモを品種改良していることからカモ類に分類される。品種改良されていることから、野生種と同様の小羽枝構造を保っていない可能性も考えられるが、太田ほか (2004) は、ガチョウはアヒルに比べて三角形の節の幅が狭い傾向があることを見込んでいたり。今回の調査でも、家禽類は節の位置、大きさとともに、野生種と同様の結果を示したため、家禽類においても三角形の節によって野生種と同様の識別が可能と推測された。

謝 辞

今回の調査を行うにあたり、よこはま動物園ズーラシア及び同園の松本京春氏、神奈川県立生命の星・地球博物館の加藤ゆき氏、神奈川県自然環境保全センターの加藤千晴氏、上野猟猟所の上野純治氏、そして桜本政邦氏、長谷川真智子氏には、サンプルの収集においてご協力を頂き、相模原市立博物館の秋山幸也氏には、機材の使用において特別なご配慮を頂いたほか、とりまとめについて貴重な助言を頂いた。また、日本大学の葉山嘉一氏にもとりまとめについて貴重な助言を頂いたほか、日本鳥類保護連盟の石田すぎさん氏にはサンプルの収集及び読解においてご協力を頂いた。最後に、生物画家の鶴野 鴻氏には、お忙しい中羽のイラストを描いて頂いた。ご協力頂いた皆さまに、この場を借りて御礼申し上げる。

摘 要

羽根の小羽枝に見られる三角形の節から、カモ目のガン類、ハクチョウ類、カモ類を識別するため、日本産のガン類6種、ハクチョウ類1種、カモ類23種の計30種と、家禽類のシナガチョウとアヒルの羽根を収集した。それぞれの羽根について、1本の小羽枝の中で三角形の節の位置、節の幅、節のある小羽枝が見られる身体の部位について調査した。その結果、節
の位置については、ガン類、ハクチョウ類、カモ類の間で違いが確認された。節の幅については、カモ類が他のグループに比べて顕著に大きかった。ガン類とハクチョウ類の間にも節の大きさに有意差が見られ、識別に利用できるような顕著な違いはなかった。ただし、ハクチョウ類はカモ類、ガン類と比べて小羽枝の長さが短くと推測されたため、節の位置と幅の識別点に小羽枝の長さの違いを加えれば、ガン類、ハクチョウ類、カモ類は識別可能と思われた。部位については、体羽では体の周りの小さな羽、翼では初列風切で三角形の節が欠如していたほか、多くの種で翼上下面の初列雨覆、小翼羽、そして簸羽においても三角形の節を確認することができなかった。その他の部位では三角形の節が見られたが、次列風切や三列風切、翼上下面の大雨覆、脂腺の周りでは、節の数が少ない場合や欠如している小羽枝も見られた。また、雉の体羽からは、この節構造は確認できなかった。各グループの識別は、体羽及び翼上面の小・中雨覆、肩羽のように三角形の節が安定して見られる部位であれば、どの部位でも可能と思われた。また、ガン類、カモ類の特徴は、家禽類であるシナガチョウとアヒルにおいても同様に確認された。

引用文献

日本各地鳥類目録編集委員会（編）2000. 日本各地鳥類目録 改訂第6版。日本鳥学会、帯広。

