コハクチョウによるナガエミクリ地下茎の採食

渡辺 朝一*・鈴木 康**

Bewick’s Swans Foraging upon Rhizomes of Sparganium japonicum

Tomokazu Watanabe* and Yasushi Suzuki**

Abstract. We observed Bewick’s Swans Cygnus columbianus foraging upon rhizomes of Sparganium japonicum at narrow waterway in rice fields in Shibata City, Niigata Prefecture, in November, 2007.

Key words: Bewick’s Swan Cygnus columbianus, Food item, Rhizome, Sparganium japonicum.

キーワード：コハクチョウ Cygnus columbianus, 食物内容, 地下茎, ナガエミクリ Sparganium japonicum.

日本列島には、北日本や日本海側を中心に多数のガン・ハクチョウ類が飛来し、越冬する。これらのガン・ハクチョウ類は、沿岸域から内陸の池沼、河川、牧草地、稲刈り後の水田などを生息域としている（高野1982，日本鳥類目録編集委員会2000など）。内陸の池沼や、水田、湿地などに生育する水草は、ガン・ハクチョウ類の越冬期の食物となる（Esselink et al. 1997, Nolet et al. 2002など）。筆者らの1997年から1998年かけての、内陸の池沼におけるガン・ハクチョウ類の食物内容調査では、マコモ Zizania latifolia の地下茎が多く記録され、マコモ以外にハス Nelumbo nucifera の地下茎、ヒシ属 Trapa の果実、ハゴロモモ Cabomba caroliniana などの水生植物が記録された（渡辺ほか 2008）。しかし、記録された水草の種類は比較的小さく、マコモと共に一般的な抽水植物であるシ Phragmites australis、ヒメガマ Typha domingensis などの採食例はごくわずかしか記録されてなかった。多くの陸上植物は、草食亜や植食性の昆虫の食圧に対して、何らかの物理的、化学的な防衛手段を持つが、もしくは被食に対して適応的で、植物体の除去に対してあまりダメージを受けず、再生力が高い（高槻1989）。このことから、ガン・ハクチョウ類による採食がほとんど記録されなかったヒシやヒメガマを含む多くの水草も、被食に対して何らかの防衛手段を持っている可能性が考えられる。
水鳥と水草の間の食・被食の関係は、水辺の重要な構成要素の一面を示したものであり、水辺に生息、あるいは生育する多くの動植物の保全や再生をはかったりするのに有用な情報の一つとなる。

筆者らは、新潟県新発田市西部の水田地帯において、コハクチョウ Cygnus columbianus がナガエミクリ Sparganium japonicum の地下茎を採食していた場面を観察したので報告する。

ミクリ属 Sparganium は、約 10 種が日本に分布し、その多くは多年生の水生植物である（角野 1994）。流水中に沈水状態で生育することも多い。種の識別には花序の観察が必要であり、沈水型の種の識別は困難である。

この採食を観察したのは、2007 年 11 月 26 日〜27 日、場所は新潟県新発田市の、万十郎川流域にある下興野集落近くの水田を流下する排水路 (37° 94′ N, 139° 26′ E) である。福島沼に流入する万十郎川と、その周辺の水路は、ミクリ属の沈水型が多く生育している場所である（狩野・石澤 2002）。この場所はコハクチョウやオオヒシクイ Anser fabalis middendorffii の越冬地として知られる福島沼の北東約 4 km の位置にある。周辺の水田では、福島沼から飛来していると思われるコハクチョウやオオヒシクイがよく見られる。この排水路は、幅約 1.5 m、水深 20 cm ほどであり、周年、河水起源と考えられる水が引かれる流量は安定している。また、観察時は、この水路の下流域で圃場整備の工事が行われていた水路がせき止められていた、通常より水深が深めで、また流れがだいぶ緩やかであった。

筆者らが 11 月 26 日の午後、この水路の脇の農道を、周囲の水田のコハクチョウを観察しながら自動車で走行中に、水路から水田に上がるコハクチョウの成鳥 2 羽を観察した。この 2 羽は、水路の脇の水田にいた成鳥 20 羽、幼鳥 4 羽の群れに合流した。コハクチョウが水路で採食しているところはあまりみられないので、自動車から降りて、水路を観察すると、この水路の約 20 m 以上の長い範囲で、多くのミクリ属沈水型の株が浮かんでいて、コハクチョウがみられた場所の水は泥で濁っていた（Fig. 1）。水面に浮かんでいたミクリ属の株を回収して検分すると、流水中をたなびく沈水葉が残され、根も若干残されていたが、株から伸びているはずの

Fig. 1. Floating stumps of Sparganium japonicum rhizomes removed by Bewick’s Swans.
地下茎が全くみられなかった（Fig. 2a）。また、この水路の脇の畦上には、この時期よく見られるイネ Oryza sativa の穂穂から構成される黄褐色のそれとは異なるコハクチョウの黒褐色の穂が多数残されていた。コハクチョウの採食行動として、水面に浮かんで首を水中に入り、大きい水かきがある両足で泥を抜き除けたりする行動が知られている（Rees 2006）。今回の観察でも、水路の 20 m 以上に渡って、地下茎が除去されたミクリ属の株が浮いていたり、水が濁っていたりした原因は、コハクチョウがミクリ属の株をくわえて引っ張ったり、地下茎を採食してしまったり、両足で泥を抜き除けたりしたために、地底に固着する地下茎を失ったミクリ属の株が浮き上がり、また泥で濁ったものと考えられた。また、この場所にミクリ属以外の水草が生育していたかどうかは不明であるが、地下茎を除去された状態で浮き上がっていたのは、全てミクリ属の株であった。今回の観察では、実際にコハクチョウがミクリ属の地下茎を採食している場面を詳しく観察することはできなかった。しかし、これらのことは、コハクチョウが水路底の地表を探り起こし、ミクリ属の地下茎を選択的に採食していた可能性が高いことを示していた。

翌 27 日の朝にも同地を訪れ、この水路の水面に浮かんで採食するコハクチョウの成鳥 2 羽、幼鳥 1 羽を観察することができた。しかし、この日も、コハクチョウは遠い距離から観察する筆者らを警戒して水路から上がり、水田面に待避してしまったために、やはりその採食行動を詳しく観察することはできなかった。

二日間にわたって同じ水路で採食行動が観察されたこと、広い範囲に食痕が残されていたこととは、前日以前からまったく数のコハクチョウによる活発な採食が行われていた可能性が高いことを示唆していた。

この場所では、前年以前にも、同じ水路で採食していたと考えられるコハクチョウが、隣の水田面に待避するのを何度か観察している。これらの行動も、おそらくミクリ属の地下茎を求めての行動であった可能性が高い。今回、二日間にわたって観察され、また広い範囲に食痕が残されていた原因として、この水路の下流で圃場の施設工事が行われてせき止められており、水量が頭打ちになり流れが緩かったりしてコハクチョウが採食しやすかったことが考えられた。

これらの観察から、コハクチョウが水路に生することクリ属浸水型の地下茎を実際に採食していたのはほぼ確実であると考えた。しかし、あくまでコハクチョウによる採食を実際に観察
できなかったこと，ミクリ属が沈水型であり種の識別ができなかったことから，糞の内容からミクリ属地下茎の採食を確定すること，ミクリ属の根系の状況を検分すること，現地を開花期に再訪し，ミクリ属を観察して種名を確定することを後日に行った。

ミクリ属の地下茎由来と考えられるコハクチョウの糞は，11月26日に同地の水路脇の畦で5個採集し，エタノールに液浸保存した。2009年7月には同地を再訪し，コハクチョウの採食行動を観察した水路および周辺水路にみられたミクリ属を調査し，水面上に見られた分枝しない花序の特徴（角野1994）から，付近の水域に見られるミクリ属はナガエミクリであると判断した。同月にナガエミクリの根系ごと採集し，ナガエミクリの根系は沈水葉の根本に生える短い根と，長い地下茎からなることを確認した（小幡ほか2010）。2007年11月26日撮影の，水面に浮いている本種の葉は地下茎が見られず，このことはコハクチョウにより地下茎を採食されたことを示していた（Fig. 2a, b）。更に，コハクチョウの糞とナガエミクリの地下茎，沈水葉，根をそれぞれ顯微鏡観察し，コハクチョウの糞中に見られた植物の細胞の形を比較した。

ナガエミクリの地下茎には，種を特定できるような細胞の形や配列は認められなかった。しかし，ナガエミクリの地下茎に観察されたスプレッドシート型の細胞の形（Fig. 3a）がコハクチョウの糞中に見られ（Fig. 3d），更に地下茎にみられたブロック型の格子状の細胞の形（Fig. 3b），格子状の細胞の一部の中に認められたパプル状の形状（Fig. 3c）も糞中にそれぞれ認められた（Fig. 3e, f）。ナガエミクリの地下茎と，コハクチョウの糞中にみられた細胞の形が一致したこの結果も，コハクチョウに採食されていたのはナガエミクリの地下茎であることを強く示唆していた。以上のことから，2007年11月26日から27日にかけて，新潟県新発田市の水田中の水路で見られたコハクチョウの採食行動は，ナガエミクリの地下茎に対するものであったことはほぼ確実である。

ミクリ属は，渓水湿地に好んで生育するという性格上，環境恶化によって減少していると考えられ，国や多くの自治体でレッドリスト記載種となっているものが多い（環境庁2000，新潟県2001など）。このことから予想されるように，ミクリ属が希少であって観察機会が少ないというためもあってか，ミクリ属と水鳥の関係性は，現在は明確でない。しかし，長野県下の池沼で23種のカモ科を中心とした水鳥の胃内容を剖検した羽田（1962）は，ヨンガモAnas falcata，オナガガモA. acutaの胃からタマミクリS. glomeratumの草，ホシハシロAythya ferinaの胃からやはりタマミクリの種子を検出した。石井（2006）は，和歌山県でヒメミクリS. subglobosumの地下茎から葉身がカモ類によって採食されていたとして食痕の写真を示している。これらの記載や，今回の観察から，ミクリ属はカモ科を中心とした水鳥の嗜好性が高い食物であるという推察も成り立つ。ミクリ属の少なさから，特に日本列島の本州以南では，ミクリ属が，コハクチョウや，コハクチョウ以外の水鳥の主要な食物となっている可能性は低いと考えられる。

しかし，良好な水辺環境が残る北海道やユーラシアなどでは，現在も水鳥の重要な食物内容である可能性もある。いずれにしても，コハクチョウによるナガエミクリの地下茎に対する採食が明確に確認されたのは初めてのことであり，その採食行動の活発さから嗜好性の高さが伺われた。マコモやリュウヒゲノミPotamogeton pectinatusで明らかになっているような，被食に対する耐性を明らかにするなど，水鳥との関係性を詳細に解明することが望まれる。

新潟大学名誉教授の石澤進氏，新潟大学教育学部教授の福原晴夫氏，新潟県立長岡高等学
Fig. 3. Microphotographs of *Sparganium japonicum* rhizome tissue (a, b, c) and feces from Bewick’s Swan (d, e, f).

校の笹川通博氏からは茨島周辺のミクリに関し、詳しく教えていただきました。ミュージアムパーク茨城県自然博物館の小幡和男氏、土浦日本大学高等学校の中村憲男氏にはナガエミクリの根系の検分にご協力をいただきました。また、鳥類学雑誌編集担当および二名の査読者からたいへん有益なご助言をいただきました。以上の皆さまに厚く御礼申し上げます。

引用文献

石井天平 2006. ミクリ（広義）の分類と生態—環境修復・保全生態の基礎情報として一. 水草研究会誌 85:

1-11.
環境庁 2000. 改訂・日本の絶滅のおそれのある野生生物（レッドデータブック）. （財）自然環境研究センター. 東京.
狩野裕章・石澤 進 2002. 福島潟の植物相と植生. 福島潟環境保全対策推進協議会. 豊栄.
日本鳥類目録編集委員会 2000. 日本鳥類目録 改訂第 6 版. 日本鳥学会. 帯広.

高野伸二 1982. フィールドガイド日本の野鳥. 日本野鳥の会. 東京.