ムクドリの調査第1報（続）

黒田 長久

前報（本誌 No. 7）の続きを記述するが、その後の調査結果を加味し、前報に記した目次も変更した。本報に追加した1956年度の調査は次の36回で分である：1月9日松戸南部、16日飯橋、2月6日、14日新浜、20日谷横内、3月2日谷横内——小岩、5日越ヶ谷、13日八幡、19、22日亀井、27日船橋、4月5日谷横内、市川、9日東和村、18日谷横内——新浜。以後23、27日、5月9日、6月8日、7月3回（12日迄）主として谷横内での蕃殖調査。

尚5月以降数回井田修一氏（同国内務省として長野県より私達の研究所に派遣された）の観察御協力を得た事項も収録し、感謝の意を表する。

4. 分布密度と行動範囲

個体数の算定はムクドリが比較的大型の鳥であり、開闊地に群れ、就宿に集木に集合し、時刻を移するものを順次算定得ることなどから比較的容易であるが、観察上の誤差は免れない。この様の個体数は主に採食地の調査に基す。

採食地は1956年の調査地を加え大体既述の如く細分される。

1. 行徳ニ浜浜区 水田が主で面積凡そ2.03平方/km。7回の調査（1954年10月26日10羽、11月22日計60羽、12月20日計60羽、1955年1月6、7日20羽、70羽、5月8日計60羽、1956年2月14日約100羽）によれば冬季の羽数は100羽未満で、20〜30羽に分散している。100m平方/(ha)に対する密度は0.49羽とする。

2. 今井－築地地区 寺の裏に泥を生えた住宅地で北方の畑が入込み、大体1.91平方/kmである。2回の調査によると、3月25日2つの寺に数軒、畑地に約50羽、計約70羽。5月18日（1955年黒田、1956年井井出同日）数所の寺に数10番数数。夕刻調査（1955年）133羽には通過飛去個体を含んだから、凡そ100羽と推定され1haの密度は0.52とする。

3. 中間開闊地 2地区の北の開闊耕地で大体1.59平方/km 2回の調査（3月18、25日）で、1及び6地区部落近くの外放ほとんど見ず。

4. 小岩地区 3の北西、工場住宅地に移し従来地を混じ里1.16平方/km 殆どと見ず（3月18日2羽）西方鹿骨、谷河に近く個体数が増える。

5. 鹿骨地区 部落をなし谷河内に移し従来の周辺難個体数多く繁殖地である。約0.71平方/km。3月1日周辺に計約100羽、5月15日周辺に3番、他夕刻制地区から谷河内に集める数10〜100余羽を数軒の調査で記録した。即ち計約100羽と推定し、1haの密度は1.41羽。

6. 谷河内地区 農家減少し、採食条件よく、且繁殖期の際を含めた集散中心となる。約1平方/kmで、数次の調査（2月20日、3月1、18、25日、4月3、15日）5月には分散）よければ、夕刻鹿骨等から集る数を含めると最大400羽となり、昼間部落周辺で採食するものは最大200羽と算定された。依って1haの密度は昼間の2羽乃至夕刻の4羽となる。

* Nagahisa Kuroda: Field Studies on the Grey Starling, Sturnus cineraceus Temminck 1 (continued).
7. 桜地区 谷河内の西、比較的農家多く樹木に富む地区で、凡そ 0.48 平方/km 常営地
区。2月20日の観察により計140羽を算定した。之を以て 1ha の密度を出せば 2.9 復とな
る。

8. 西一ノ江地区 桜の西、東京東端、東小松川四丁目に続く地区で田畑豊かで農家は少い。
凡そ 0.8 平方/km。2月8、20日総計92羽及び約100羽を算定。4月3日数ヶ所約70羽営
巣、即ち約100羽と推定し1ha の密度は1.3羽となる。

他地区1956年には次の地区を調査した。

9. 興之宮地区 国道二枚橋北方水田で約1平方/km。3月2日50羽を算定。即ち1ha の密
度0.5羽。

10. 上小松川地区9.の西北方約1.04平方/km。同日の観察で70羽を認め、1ha の密度
0.67 となる。

11. 奥戸、細田地区 同日奥戸では0.49平方/kmに20羽、即ち1ha に0.4羽、細田では
0.64平方/kmに110羽、即ち1ha に1.7羽の密度となる。併し此処は北方ポピュレーション
との混合採食地で新浜グループの鳥は17羽に過ぎ
なかった。

12. 鳥取南方地區 四ツ
木の町を隔てて隔離された
水田地で、3月22日の観
察により約 0.87 平方/km
に50羽、即ち1ha に0.57
羽となるが、やはり混合採
食地で新浜グループ10羽
の北部であった。

13. 本八幡南方地区 鉄
道と疎な部落を通ずる道路
の間の広い開闊水田地区で
3月13日の観察。主として
周囲の部落附近に20〜30
羽に分れて、平均200〜300
m方を隔てて採食。即ち小
群毎に或広さを確保してい
るようであるが、テリトリ
ーとは云い難い（夕方には
分散群は帰鰐の為の“夕刻
集合い食地”に集る訳であ
る）[同じ“分散小群採
食”状態は広大な埼玉県
越ケ谷地方でも観察された

第1図 新浜及越ケ谷（一部）ムクドリ群の冬季採食行動範囲略図
（河川の番号は第1表の地区区分を示す）(Feeding ranges)
表1 冬季観察時における地域別の飼料数

<table>
<thead>
<tr>
<th>地区</th>
<th>面積 (km²)</th>
<th>飼料数</th>
<th>1haの密度</th>
</tr>
</thead>
<tbody>
<tr>
<td>行徳-新浜</td>
<td>2.03</td>
<td>100</td>
<td>0.49</td>
</tr>
<tr>
<td>今井-野村</td>
<td>1.91</td>
<td>100</td>
<td>0.52</td>
</tr>
<tr>
<td>中間開発地</td>
<td>1.59</td>
<td>始終無</td>
<td>-</td>
</tr>
<tr>
<td>小岩</td>
<td>1.16</td>
<td>少し</td>
<td>-</td>
</tr>
<tr>
<td>虎澤</td>
<td>0.71</td>
<td>100</td>
<td>1.41</td>
</tr>
<tr>
<td>谷川</td>
<td>1.00</td>
<td>400</td>
<td>4.00</td>
</tr>
<tr>
<td>藤原</td>
<td>0.48</td>
<td>140</td>
<td>2.90</td>
</tr>
<tr>
<td>西原</td>
<td>0.80</td>
<td>100</td>
<td>1.33</td>
</tr>
<tr>
<td>龍之宮</td>
<td>1.00</td>
<td>50</td>
<td>0.50</td>
</tr>
<tr>
<td>上松川</td>
<td>1.04</td>
<td>70</td>
<td>0.67</td>
</tr>
<tr>
<td>奥戸-細田</td>
<td>0.64</td>
<td>*110</td>
<td>*1.7</td>
</tr>
<tr>
<td>萩屋南方</td>
<td>0.87</td>
<td>*50</td>
<td>*0.57</td>
</tr>
<tr>
<td>萩屋南方</td>
<td>3.00</td>
<td>200</td>
<td>0.67</td>
</tr>
<tr>
<td>萩屋南方</td>
<td>4.50</td>
<td>400</td>
<td>0.88</td>
</tr>
<tr>
<td>市川北方</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>船橋北方</td>
<td>2.24</td>
<td>136</td>
<td>0.61</td>
</tr>
</tbody>
</table>

* 北方グループとの破綻 (両生産区地)。
** 更に東北恐らく印除後からも飛来し続けるときは 18〜20 km とする。一は最大密度の距離を示す。
以上を要するに、分布密度は観察の地域中心地（観察中心地でもある）は谷川内一円であるが、或程度 (約 1 平方/km) の広さのある限りムクドリは水田地に進出し、平均密度 1ha に 0.5 羽内外を以って通常 20〜30 羽の群を分散。広大な水田地の密度合計は数百羽となり、之が夕刻迄の群の大きさは一ケ所に集まる。行動範囲は以上の場合では 10 km 内外が限度となるが、之は地域または住宅地に遮断されると為で、崎玉県越ヶ谷市内でもに際に多数群は広大な耕地を利して遠く分散し、東京東部まで南下して新浜の群を圧倒する。即ち帰域時観察により両群の分布境界が細田及び兎有南方で発見された。細田の採食群 110 羽中 92 羽は越ヶ谷、17 羽が新浜に、兎有南方では 50 羽中約半数を両方の場に分れて帰域した。細田は越ヶ谷から 20 km、新浜から 9 km、兎有南方は夫々 18.5 km、及び 11.5 km である。又越ヶ谷から 19 km、新浜か
ら 15 km にある松戸南方水田地の群約 70 羽は総て越ヶ谷に帰着し、その分布限界と思われた。併しそ越ヶ谷から約 16 km の松戸——馬橋地区もその分布範囲であった。

5. 畳植密度と菌殖条件

菌殖は冬季の採食地区内で行い、各地区の菌殖密度は環境条件によって違う。それは1）採食地の面積及び構成（水田が最適地、食物量及び種類）、2）樹木の種類と樹高による菌殖場所の多寡、3）安全性と他の鳥類の関係が考えられる。調査地区について比較して見るに次のようなである（地区の面積は採食行動の範囲を捉えるべきだが未調査の所が多いので省略した）。菌殖番数は観察による推定である。

Table 2 Number of breeding pairs by area and its surroundings.

<table>
<thead>
<tr>
<th>区分</th>
<th>地区</th>
<th>菌殖番数</th>
<th>環境及び菌殖場所</th>
<th>観察年</th>
<th>観察者</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>谷河内</td>
<td>20±</td>
<td>三方水田地帯，農家くく，某農家，小寺及び村村の樹木に菌殖。 1956 年観察利用 17 畜。</td>
<td>1955</td>
<td>黒田</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50±</td>
<td></td>
<td>1956</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>虎骨</td>
<td>10±</td>
<td>東西水田地帯，路を造りの多い部。周辺の社寺，農家の樹木に菌殖。</td>
<td>1955</td>
<td>黒田</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1956</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>椿</td>
<td>15±</td>
<td>水田地帯で農家散在。社寺各 1 及び農家の樹木に菌殖。</td>
<td>1956</td>
<td>井出</td>
</tr>
<tr>
<td>d</td>
<td>西一ノ江 部</td>
<td>15〜20</td>
<td>三方水田，一方住宅地となる。某農家及び寺の老樹に菌殖。</td>
<td>1955</td>
<td>黒田</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1956</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>大杉</td>
<td>12±</td>
<td>東京市街の東端，以東林。公園の老樹及び少数農家の樹木に菌殖。</td>
<td>1956</td>
<td>黒田</td>
</tr>
<tr>
<td>f</td>
<td>今井一鹫崎</td>
<td>30±</td>
<td>連続した部品，北方水田地，約 8 社寺等の屋根及び樹木に菌殖。</td>
<td>1955</td>
<td>井出</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1956</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>本八幡南方</td>
<td>1±</td>
<td>広大な水田地。道路に小部品が速く，樹木小。</td>
<td>1956</td>
<td>黒田</td>
</tr>
<tr>
<td>i</td>
<td>本八幡</td>
<td>15±</td>
<td>水田地から別離れた住宅地。周辺の社寺などの樹木に菌殖。</td>
<td>1956</td>
<td>井出</td>
</tr>
<tr>
<td>j</td>
<td>東和一高根</td>
<td>10±</td>
<td>畑とけ及び水田地，沼あり。農家散在。孤立した神社の巨樹に菌殖。</td>
<td>1956</td>
<td>井出</td>
</tr>
</tbody>
</table>

Table 3 Difference of breeding-pair density in two feeding areas north and south of River Edo.

<table>
<thead>
<tr>
<th>区分</th>
<th>統観食面積（km²）</th>
<th>150±</th>
<th>所属</th>
<th>密度</th>
</tr>
</thead>
<tbody>
<tr>
<td>江戸川北部</td>
<td>5.72</td>
<td>a-f</td>
<td>1平方/km 26 羽</td>
<td></td>
</tr>
<tr>
<td>南部</td>
<td>4.90</td>
<td>g</td>
<td>1平方/km 4 羽</td>
<td></td>
</tr>
</tbody>
</table>

1 例として谷河内を中心とする江戸川以北（今井以北，小野以南）と江戸川以南（南行徳以東）を総合的に見て大凡その統観食面積と之を利用する菌殖番数を概算すると次の第 3 表の様な相違が明かなる。
第2回 畜殖分布略図

●は大体の巣の位置を示すが必ずしも1巣を意味しない。
谷河内の○は特に集中営巣する巣を示し×は2次巣のあることを示す。（Nest distribution）

（例えは第2回畜殖の不可能）効果を生じている（畜殖報告に別記）。

又此処の岩懸氏のケヤキは冬季周辺の採食群の集散中心となり、その竹林は畜殖に先立つ“第2次捕”となることは前報に述べた。このような第2次捕には冬季の塩から遠距離（谷河内の場合は新浜から約4km）の地区では畜殖開始前分散独立群に分れるという経済的価値があると考えるが、今の所同様な他の場所にその例を見ていない。それは1）集散及び採食地の中心であること 2）飼接人家少なく人的感度のないこと 3）集合する畜及び場の竹林の外、老樹の割多く畜殖にも適すること 4）樹木が過度に茂って他の鳥種を多く誘致しないこと（但し谷河内でもスズメの外モズ、オナガ、ハシボソガラス、キジハト各1番が畜殖し（1956）オナガとカラスはムドリに心理的制約を与えた）の条件に欠けるからと考える。

東和村--高須一帯
此処は越ケ谷御霊場に囲う群の周辺（periferal）採食地で、一見谷河内に似た環境であるが殆んど畜殖していない（4月9日、6月29日調査）。それには採食地（特に東和村方面）は網が全水田が従の構成であること、樹木はあっても比較的若く洞の多い老樹でない（巣穴の欠乏）ことが考えられるが倉調査を要する。畜殖を確認したのは単独に扁平した神社の巨松林の下で約10番と算定された。周囲は緑であるが採食環境不充分で、沼を隔てた1kmの氷田近隣採食する例を観察した。即ちこの巨松林は安全性（特に空気飼保持者が来るか遊高）と洞に富むことから畜殖場となったと考えられる。又田植後は此の附近
の畑地を採食地として集り、この巨松林は千余の群の集散場となるが飾とはならない（別報）。
役高頃には可成りよい竹林があり、東和の戸ヶ崎には大きな竹林と大ケヤキを共潰した家があ
るが、恐らく畑地帯であることと残跡の一端である為の安全性の不充分から、2次期とも繁殖
場ともなっていない。

本八幡方面

市川、本八幡、船橋では北方に水田が入込み冬季大群の採食地となるが、台上
の畑には全く見られず、台上有合縁の老樹ある部分の木にも繁殖するを見出し得なかった。
これはムドリが平地の鳥であることを示すと共にヒヨドリ他の鳥の集るような林は好ま
ない（前報に沿及）証拠となり、寧ろ住宅地内の社寺の松や縮木に分散繁殖を見る。柄田尻
など広大な水田地中的部所に十数の採食地を持ちながら、一般に縮木が稍稍而も恐らく樹洞の
欠乏から殆ど常営個体を認めなかったが、江戸川を隔てた本行徳町は殊では比較的狭い
採食地も利用して散在する農業や社寺の老樹に営営していた。

6. 食 物 条 件

冬季の採食地（水田）の広さは不足しているとは思われない（詳しくは未調査）が、谷河内で
の観察では季節的には採食地の条件は不足を来し、遂に群は北方の畑地帯に移動を余儀なくさ
られるが、この状況は第2報に記述する。そしてそれは第1回採の竜立立である。即ち6月末果
立鰐を混ぜて倍加したムドリは田植の遅れた水田に集中繁殖し、田植完了前後に水田の少笔者
の雑苗間を歩いて採食し、サワダ湖区長村したキウリ畑でも補足的採食を行うが、稲が50 cm
以上に茂ると主群は遂に此の水田地帯を放棄する（7月23日確認）。

このような環境変化は全部が第2番仔を育てるだけの食物条件を許さない。特に第1回の
重要育雛期であったケラ（大形の為給餌回数も経済的でもある）は水田に引水されるから畑地
へ上り地中に潜行して捕食困難となる。事実1956年谷河に架設した19巢箱中第1回は17
個を利用したが第2回は僅か3個であった。第2回窩の育雛飼料がどの程度充分であるか（雛
の空腹状態及びその成長度から見て第1番仔に比し飼料が多いのではないかとの検討調査中であ
る）は目下検測中の雛を第10回と比較して結論される。*柄田尻により採食場の季節的制約
を受けない東京都内某地の磁状地帯は多少谷河内より遅い感があり、或はより多くが第2番仔
を育てるのではないかも調査の予定である。*（共後1巢5雛が発育極めて不良で調死した）

繁殖帯の食物条件の変化

此の時期には採食地の状況は刻々変化する。営営期に入る4月中旬
は水田は適冬の採食地としての価値を保有し、雑草は小さく陸稲田もウネの間が採食可能で
あり、後可成り茂るまでムドリの加くその稲田のウネの間に落ちるよう飛行り
る。又この頃から、肥料を施した散在する稲出上の畑地にも降りる。同時に雑草の生えた水田
が掘掘されるが、この時期にはなる放置されたままの田で好んで採食し、路の屑集場にも集
る。即ち採食適地は比較的変化に富む。5月中旬には陸稲田の雑草が茂る為、陸稲田の多い部
分は不適地となり放置水田や土地畑の多い部分に余 slik的採食地を移す。

昆蟲など被食物となるべきものの発生棱次状況は下記の試験的なサンプル採集及び観察に不充
分ながら示される（主にムドリの採食していた場所）。兹に一部の飼育を賜った高島春雄氏に
感謝の意を表す。

3月13日 本八幡南方水田。～にカガンポ及ハエ初見。
4月5日 市川北方水田。～に水田尾面に小虫群集。

(13)
以下幾つが谷内に、1 坪内のサンプル。数は採集数。
5 月 1 日 陸橋のあぜ。ウズキダクスゲ 1, クサダモ 1, コクサダモ 8, ベンダカネカズラ 2, アオバ
リガタハナケツゲ 1, ヒシバタ 2, カゴノ 1 種 1, ヒメノアラガイ 2, オナジマヤマイ 1
9 種 19 頭
5 月 7 日 荒地。キロサダゲ 1, ケラ 3, アリ 1 種 7, ウズキダクスゲ 1, ホソリダケ 2, ノ
ハクサダモ (?) 1 種 16 頭 (井出氏採り)
5 月 12 日 裸土畑。モモダモ (?) 1, オカダガニムシ 27, ミミズ 1, アリ 1 種 1, “青虫” 1, ヒ
ゲシロハサミムシ 1, ハサミムシ 1, クモ 1 種 1, ゴミムシ 1 種の幼虫 1, アブ幼虫 1, 不明幼虫 1
(井出氏) 11 種 37 頭
同 放置水田。クサダモ 2, ナメクジ (?) 2, モノアラガイ 1 種 1, “青虫” 2 種（一種は黄色
色体部状態）2 (井出氏) 5 種 7 頭
同 耕摂場。ホシラジムシ 12, 小形ムカデ 1, オカダガニムシ 2, ゴミムシ 1 種 1, ナメ
クジ 1, その他 2 (井出氏及び黒田) 6～7 種 約 20 頭
5 月 15 日 裸土畑。カタツムリ 1 種 1, ミミズ 5, イシムキムシ 1 種 1, ヒシバタ 1, ハサミムシ
1, ヒゲシロハサミムシ 1, ヒラタキイロチピゴミムシ 5, ウズキダクスゲ 14 （成虫 2 頭のみ 他は幼虫）
9 種 29 頭
5 月 17 日 播種した水田の一角。コオロギ 10, クモ類 13 (成虫 1, 他は幼虫), ワラジムシ 1,
ゴミムシ 1 種 1, ヒシバタ 4, アブ 1 種 1, 小形黒色カイズシ 1, ケラ 2, 8 種 33 頭
5 月 25 日 花キャベツ拡半ば収穫後。夕方数羽のムダドリ盛に“青虫”（モンキョチョウ幼虫）を捕
食，絞ってくわえ去るものを見る。
6 月 24 日 田植前の耕した水田 (2 坪)。クモ類 12 (成虫は少し), コオロギ 1, イナゴ (?) 幼虫 1,
キリウマカガニムシ幼虫 (?) 2, 小形ヒル 1 (ヒルはアリカラザリガニ増殖後殆ど絶滅したという), ゴミ
ムシ 4, ヒシバタ 1, 7 種 22 頭
7 月 2 日 サワダ畑。エンマユコオロギ幼虫, 小型コオロギ科 3 種の幼虫 (2～3 倍) 等多数発生し
あり, ヒシバタ 1, ツツヒシバタ 1, チュウムシ幼虫 1 クモ類 5 (尚サラダの根には所謂 “ネキリムシ”
約 1 吋恐らく 1 坪 2～3 倍あり種名不明。
7 月 7 日 田植後の水田。タニシの 1 種の小貝数見, 特に小孔から水中に半身を出し活動するイ
トミミズ (?) の 1 種多い部分あり。
4 月は全般的にクモ（ウズキダクスゲ外 2～3 種）が優勢種であるが, 次で“青虫”, ケラ, 越冬した数のコオロギなど重要種が出現, その 5 月 10 日頃からは土乾燥の孵化期とな
る。育蚕の盛期即ち孵化成長の後期及び巣立期の 6 月中旬には、田植準備の為水田が掘りさられ引
水されるので, 水面から出た土塊に掻出されたケラやクモなどが集る結果となり, 採食には最
も好適な状態を呈し, 農夫の後に降って盛に捕食し巣に持帰る。（18 頁附記参照）
以上の様々な発生の進行と被害物の発生の併行的進展はLackの anticipatory adaptation説
を支持する一致してよくも知れない。
【4】6 月 11 日にはケラの幼虫約 5mm のものが可成りみられた。或る水田では 1 坪に成虫 5
匹, 他の田では 1 坪で僅に数匹しか出ない場合がある。農夫によればこの差は水田の高
さに関係あり, 冬水雪を多く受ける低い水田では少し, 比較的高い水田ではケラは多いと云う。
上に記した種類は採食地の被害物相の一部であるが, その内からムクドリなどの種を如何な
る量で捕食しは育蚕の為に摘択摂取するかの食性上の調査, 各種の生活史や食物連鎖, もれ
に及ぼす捕食者としてのムクドリの影響など生物学的方法による調査が必要となる。その予備
的観察の1例を下記に記す。

但しこれは第3報繁殖報告に附随する一部である。

5月1日 繁殖場（岩備氏邸）の西方大体400×500mの採取地で11:15〜12:15a.m.の観察である。約200米の距離の約3haの観察採食区域に繁殖場から1〜4分置きに多くは2羽（営果期のもの）時に1羽（既に抱卵中のもの）で計36羽が飛来した。各翅長は繁殖水田1: 翅1：放置水田1の割合で、繁殖水田3回、放置水田2回、又は5回；3回（水田ともとに）の頻度で採食に降った。即も観察区域約3haに1時間36羽が飛来し、それはその数をコロニーに於ける17 Naziに繁殖の36羽。自然巢の少なく5番、雛の寺の約2番を20羽×3、鳥計60羽×3（他に南側村の約10番がその採食地に出ると）の中の約半数であった。各個体の採食は短い場合は2〜3分で直線的にコロニーに帰り、10〜20分の採食を行おうもあった。

この採食時間は現地に於けるよりも、巢を去る時間を計る方が容易且確実である。採食現地に於ける食物の状況は、ウズキドクダモ、クサダソ類が優勢で一時には10頭は見出された。若羽別別のような種類があったか、此の時期にコショウを主食とすると仮定せば、その個体密度から観察繁殖区域内の数を推算し、その中からムクドリ36羽が1時間に食する量を元とした1日採食量を算引けば、コショウの密度に対する捕食影響率を推算すること。然しこれには1）ムクドリの巢内容検査、2）昆虫faunaの調査、3）飛来頻度と採食時間などの予備調査を行わねばならない。

6. 採 食 量 の 検 定

之は上記に関連した子孫的観察である。採食量を生態学的見方で検定することは応用的見地からも必要である。即ち或時期、時間、地域内に個体又は群としての島が、共に保有される動植物の種類及び数の中から選択採食する種類と数の割合を求めたいのである。それには上に記した如く動植物の生産性、生活史、食物連鎖を併せ調査せねばならないが、第一段階として島（ムクドリを主として）の摂取する量について考察する。

a) 定区域内での採食量の算定

某地域で採食するムクドリの群の大きさは環境条件と食物保有量に左右される。故に既述の如く定区域内の羽数即ち密度が地域的に異なる。所が本調査の場合最も好条件で羽数の多い地域でも、1ha当たり僅か4羽と算定された（第1図参照）。これはムクドリの応用的価値に疑を生ずる。然し、この算定は所謂 lowest density（Elton, 1932）で面積と羽数からの単一算出であり、実際は群棲していて（第1図参照）、一様に散るのではなく1haに全群の何百羽が集中することがある。従って部分的な所謂 economic density（同上）による集中効果が発揮され、小移動をなさから各所での効果を残し、1日に1回群が来ただけでも可成りの効果となるのではないか、又環境がよく食物量が多ければ群の飛来頻度が多くなり、夕方には各所の群が或場所に合同して就場前の採食を行う（第1図参照）。この場合は最高密度 maximum density（同上）にするから集中効果は一層大となる。

此の状態は季節的に（即ち環境、食物、鳥の生活環）に関して変るが、それを限定すれば或区域内でムクドリの群が摂取する食餌量は次の如く算出されよう。

1日（1時間）に於ける調査区画内の単位面積でのムクドリ群の摂取量：

羽	形成する羽数	N
羽	1日（1時間）に飛来する羽数	n
羽	1回に区画内で採食する時間（平均）	t
羽	1羽の単位時間（例えば1分は5分）の食餌量	W

（15）
調査区画の面積
とすれば、求める量 \(L = \frac{N_{nt}}{A} W \) とすることができる。この場合は冬の群積時を考えたが、繁殖期には \(t \) は個体の採食時間（平均）、\(N_{nt} \) は繁殖場からその区画に飛来する雌羽数（前記参照）を用いることとなる。\(N_{nt} \) は 1 日の時間内も朝昼夕では違う値で、その平均を以て 1 日の数字とできる。又繁殖期には区画内の耕地の状況の変化及び繁殖の過程により飛来羽数が変わる箇所である（第 3 報繁殖に報する）。某期間の資料は何日かのサンプル観察から概算できよう。採取時間と 1 羽の食齢量（標準）については更に一考を要する。

採取時間（個体）の滞在する時間 \(T \) は採取実用時間 \(t \) と休息時間 \(t' \) の和であるから、1）採取と休息の時間的割合を記録する必要がある（1例第1報参照）。そこで滞在時間に対する採取実用時間の割合（％）は \(\frac{t}{T} (= t + t') \times 100 \) となり、その何回かの観察による標準値を以て滞在時間に乗ずべき係数とできる。然してそれは 1）時間的（朝昼夕）に、2）時期的（冬季と繁殖期など）に、又 3）採食習性によって違うであろう。例えば冬は殆ど終日採食場に在って、採食持続時も長く、又その附近で休息する（その割合は 1 日の時間で違う。第 1 報参照）が、繁殖期では繁殖場と採食場に何分かを返すことの連鎖で、採食場に於ける休息は殆ど無視できる。又 3）は飼料型（穂食、内食）か遊食型（昆虫食等）かの別で、前者では普通雑嚢を持ち飼食するから、遊食型の鳥より一歩した休息時間間も食間隔がある箇である（池田真次郎氏“林”1956年5月号によるとヘンダーソン氏は植物性食性の鳥は 1 日に 2 回、動物性食性のものは 5～6 回胃を充満するとする結論を得た）。ムクドリの知く遊食性の鳥でも採食に適宜小休止と運動を配して消化と補充を適正にし、飼食型でも小鳥では新陳代謝の要求から、一旦飼食した後は消化した分を常に次第に補充するから、これは単飼食的である。これ等のことに関する時間的観察の方法としては 1）野外観察と 2）実験室で個体について生理的に採餌一休息（及び運動、消化）連鎖の時間的割合を検する（飼育の誤差を考慮）ことを併用すべきである。

食齢量（数）これは食餌時間、啄食速度（定時内の回数）、前胃や胃嚢の容量、食物の種類（大き）に関係する訳である。この場合求めるのは 1羽が単位時間（例えば 1分又は 10分間）に摂取する量（数）であるが、その方法の一つは 1）啄食回数の観察で、単位時間に食した虫の数と種類（その数的割合）を求める。その試験的観察例として第 4表から、頑に於て 1分間 2～9回、水田に於て 1.6 回となり、主としてクモ又は小昆虫と思われたが、1例では小昆虫 6 回、ケラ 2 回の割合となった。種類は捕食物のサンプル採集（前記）からの推定であるが、確実を期す為に 2）胃内容検査が必要となる。

この検査の統計からはその時期の食物の種類の分類と平均（時間的、時期的区分）での胃内収容量（量）の平均 \(v_a \) と之を僅に経験数（量）とする低算定できる（鳥類調査報告第 4 号参照）。この経験数を食することに要する時間 \(t_a \) は啄食回数の観察から逆算できる。かくて得られた経験数と之を食することに要する時間から 1分間の平均食齢量 \(v_a \) が算出できよう。（偶実験的には、空腹状態で定時内に食した量から 1分間の食齢量が出せるが、之には不自然な誤差が入る）。又準飼食型では朝先ず全収容量 \(v_a \) を食した後に、経験数を補充するとすれば、T 時間内に食する全量は \(V = v_a + \frac{v_a}{t_a}(T-t_a) \) で表され得るようとなる。

(16)
b）採食時間を基準とする採食量の算定

以上の記述では採食面積は一定、即ち所まるの調査区域を設け、その中での食観量を支えた訳であるが、採食時間等から逆に採食面積を推定できる好都合である。採食時には鳥に於ける休息又は抱卵、給餌と採食場（通常200〜500mの距離）での採餌の速観であるが、1）育雛餌量は餌を持持する頻度や種類の観察（この為巢箱のガラス使用による特殊工夫、人工受餌器等が考察された）に始り得るが、採食場での観察の食観量は極く。そこで2）親鳥が採食に巣を去っている時間、3）採食地（同一個体でなくてもよい）の確認4）採食地に於ける採食行動の観察や被食物の分析を総合して、大体の算出が出来よう。その予備的記録として第4表のような観察を行ったが、仮ではただ提示するに止める（仮冬季群行動の一例は第1報參照）

Table 4 Observation of feeding behavior

<table>
<thead>
<tr>
<th>Date</th>
<th>Kind of feeding place</th>
<th>Area or distance walked</th>
<th>Duration of feeding</th>
<th>Frequency of pecks</th>
<th>Food items (observation)</th>
<th>Observer</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 May</td>
<td>畑 土 塚</td>
<td>畑 約4m2</td>
<td>時間</td>
<td>16</td>
<td>クモ又は小昆虫</td>
<td>黒 田</td>
</tr>
<tr>
<td>7 May</td>
<td>田植付け水田</td>
<td>田植付け水田</td>
<td>時間</td>
<td>1</td>
<td>2.4.6</td>
<td>田</td>
</tr>
<tr>
<td>12 May</td>
<td>田植付け水田</td>
<td>田植付け水田</td>
<td>時間</td>
<td>2</td>
<td>20</td>
<td>田</td>
</tr>
<tr>
<td>19 June</td>
<td>田植付け水田</td>
<td>田植付け水田</td>
<td>時間</td>
<td>5</td>
<td>8</td>
<td>クモ又は小昆虫</td>
</tr>
<tr>
<td>24 June</td>
<td>田植付け水田</td>
<td>田植付け水田</td>
<td>時間</td>
<td>5</td>
<td>8</td>
<td>クモ又は小昆虫</td>
</tr>
</tbody>
</table>

この種の資料からは親鳥が巣を離れた時間から（採餌場の收復は距離をもとられるが殆ど無視できよう）大体どの位の数を摂取しこの位の範囲を行動（採餌場での飛翔による摂取は無視し、地上の実物探食面積又は距離）したかの大凡及び数に対しこ必要な探食面積と耕地の構成を知る一法ともなれるであろう。此の場合にも胃内検査は別に行う必要がある。

結び

1．前号（No.7）では新浜御藏場に棲むムクドリ群の去就動行動、採食行動及び採食地の条件、巣築初期に於ける採食（築巣）地域内の2次的場についての観察を記した。
2．本号（No.8）では1956年度の観察を含め、先於新浜及び埼玉県越越谷の群の採食行動範囲を述べた。之等は東京東部で相会し混合する。
3．次に東京東部の調査地区に於ける築巣分布の概略及び密度について述べ、その築巣条件による差を示した。
4．食物条件については、特に春の水田を主とする耕地の変化及び被生物の発生状況（サンプル採集例を挙げ）と築巣進行と併進を述べた。第2番仔は田植による水田の採食不適地化により低率で、雛を混食した群は稲成長と共に北方の畑地帯に移る。
5．被食物群に及ぼす影響（益性）を調査する第1段階としての採餌量の検定を、二、三の予備的観察も含み方法論的に考察した。
Résumé

By addition of 1956 observations, this report alters and supplements the résumé 4-6 in the Misc. Rep., No. 7, p.289 as follows:

1. Daily winter feeding range (rice paddies) of the flock roosting at Shinhama is delimited to 12 km at the most by hills and scattered villages, while Koshigaya flock in a wide field (30 km north of Shinhama) covers 20 km, its peripheral flocks meeting with those of Shinhama at the east of Tokyo. The feeding density ('lowest density') ranged from 0.4 to 4 birds per 1 ha.

2. Number of breeding pairs is given by each subarea studied, and the factors influencing the breeding density or preference are discussed. Chief factors may be: 1) enough nesting hollows, 2) type and age of vegetation, 3) structure of feeding area (at least some rice paddies) and 4) safety, etc.

3. Rice paddies become unfit for feeding area as the transplanted rice grows. This happens after the young of the 1st brood joined the flock and, thus, only few early 2nd broods could be raised (Of the 19 nest-boxes, 17 were used in the 1st and 3 in the 2nd broods; more should be raised in city zone). Then the flock finally moves to the northern field.

4. As season advances, the condition of feeding ground changes by cultivation. Varieties in the insect fauna contained are shown by several sample collections made at different places and dates. Early in the season, the ground spiders are dominant everywhere, but the most important food for raising young is the mole-cricket (Gryllotalpa), which is best sought in the paddies ready for rice transplantation in late June, when the nestlings grow and leave the nest. This may be said to support Lack's theory of anticipatory adaptation.

5. Preliminary consideration is given on the method of determining the ecological niche of the starling quantitatively. The quantity of food taken in a day (or an hour) within a unit area by a flock of starling occurring in a study area may be calculated by:

\[L = N \times t \times W \]

When:
- \(L \): the quantity of food taken by one starling within a unit time (1 min., 10 min., etc.),
- \(N \): the number of birds of the flock,
- \(t \): length of one feeding stay (mean) of the flock in a study area,
- \(W \): quantity of food taken by one starling within a unit time (1 min., 10 min., etc.),
- \(A \): dimension of study area.

In breeding season \(N \) and \(W \) are substituted by the total number of individuals coming in from the colony. Discussion is given of the method of observation and calculation of \(t \) and \(W \), and the method to estimate the quantity of food taken by parent birds was suggested from feeding behavior and the time of absence at the nest site.

(18)