オナガの生活史に関する研究（7）

繁 殖 2

細 野 哲 夫*

筆者は先に第1報（1966）でオナガ Cyanopica cyana の繁殖の一端について述べたが、その後引き続き調査を行なってきた。その結果、さらにいくつかの資料を得ることができたので報告する。本報では、主として営巣、繁殖率などのほか、なわばりについて述べる。

調査期間は、1965年10月から1969年9月までである。調査地域は第1報と同じ長野市長島町北戸部および上布施である。調査地域の詳細については第1報で述べたものと略す。

本論に入るに先立ち、引き続き御指導をいただいている信大教育学部生物学教室羽田健三博士、山階鳥類研究所黒田長久博士、また、職場において研究への御理解をいただいた前通明小学校黒岩常験校長、朝陽小学校吉江武英校長、調査場所を提供して下さった各家庭の皆様方に謹んで謝意を表する。

結果と論議

A 営巣

1. 営巣樹種

オナガが当地方では庭木および果樹園に営巣することは、第1報繁殖（1）（1966）で述べたと同様であった。営巣樹種は、調査例30件についてみると次のようである。（ ）内の数字は件数を示す。カキ（11）、スギ（4）、アカマツ（3）、イチイ（2）、リンゴ（2）、アンズ、モモ、キリ、ヒノキ、クスギ、マサキ、ナシ、クルミ（各1）の13種である。このうち、最も多いカキは、前回の調査でも同様であった。それに次ぐスギ、アカマツもやはり前回カキに次いで多くみられたものである。一方、植栽本数が多いにもかかわらず営巣例が少なかったリンゴは、今回の調査でも同様に少なかった。モモの果樹園では前回一例もみられなかったが、今回一例だけみられた。しかし、これがリンゴ同様植栽本数からすれば、利用率が極めて低い。以上前回と今回の調査から両者の間に営巣樹の選択には共通した傾向が認められた。

つぎに、前回と今回の営巣樹を合わせた70例について営巣樹種と利用件数をみると下記のようになる。（ ）内の数は利用件数を示す。カキ（19）、スギ（8）、アカマツ（7）、イチイ（6）、リンゴ（6）、カエデ（4）、ウメ（3）、サクラ（3）、カシワ、ケヤキ、カン（各2）、アンズ、モモ、キリ、ヒノキ、クスギ、マサキ、ナシ、スモモ、タケ、サクラ、ハルコガネバナ（各1）。以上23種で、当地方の人間周辺に植栽されている殆どの高木が対象になっている。このことは、営巣樹選択に幅広い適応性をもっていることを意味し、当地方人家周辺での繁殖を可能にしている一因と考えられる。また、彼等が営巣樹選択に幅広い適応性をもつことを示すものとして、ポルトガルでの例を付記すると次のようである。Olive-tree,
holm-Oak, Orange-tree, eucalyptus, Short-mulberry, Cork (Santos 1968).

ところで、営巣に当ってこのように多くの樹種を利用するが、上述したように必ずしもその植栽本数に比例して利用されないのみか、使用度の多い樹種でも、それぞれの木によって利用回数が異なっている。すなわち、営巣に利用される樹種のなかでの同一樹に対する利用状況をみると、大方は1回であるが、木によっては2～4回にわたって継返し利用された。例1：樹種カキ、巢番号54, 72。例2：樹種カキ、巢番号5, 51。例3：樹種イチイ、巢番号11, 28, 48, 65。例4：樹種アカマツ、巢番号1, 49などである。

このうち、4回も利用されたイチイの木は、写真1に示したように人家の庭先にあり、人目におくれやすい場所であった。しかし、どの巢も木の頂上近くの横枝上にあり、寄生した小枝や葉のために外部からは見えにくかった。なお、利用した個体が同一個体かどうかは明らかでない。ところで、木によって使用回数が異ることは、個々の木について、それぞれの鳥が評価を下していることが考えられ、評価の対象は個々の木がもってい る構巢条件にあり、オナガの場合は、樹高や枝張り等が対象となっている。樹種そのものにあ るのではない。

2. 巣の位置

上述した30件の例および前回の例から巣の位置について、地上からの高さ、樹上での位置、日中行動圏内での巣の分布から考えてみた。まず、地上からの高さについてみると、第1表にあ るように地上3 m と5 m のものが最も多く、それぞれ23%をもっている。この全体を5 m 以下と6 m 以上に分けてみると67%は5 m 以下に営巣している。これは、前回の結果と類似している。また、前回みられた9 m, 10 m という高所には1例も見出されなかった。これは、前回述べたように高所では発見しにくいということや、それ以上に適した枝が少ないものと考えられる。なお、最も高いアカマツの稈には例年カラスが営巣していた。低い方では、2 m が最低で、前回同様であった。ただ、全体の件数に比較して前回より低率である。

<table>
<thead>
<tr>
<th>Height of nest (m)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of nest</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>Chicks fledged</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>Chicks fledged per nest</td>
<td>0</td>
<td>0.29</td>
<td>0.60</td>
<td>0.43</td>
<td>0.50</td>
<td>0.25</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>Total No. of nest</td>
<td>20(67%)</td>
<td>10(33%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(26)
つぎに、巣立率との関係をみると今回は第1表のようである。件数が少ないので前回の分と合わせて論じることにする。第2表にみられるように、巣立率は、2 m の位置のものが22%で他に比べて低率である。3 m では、33%と上昇し、4～8 m では43～50%の間にありほぼ一定している。このように、4～8 m の間で巣の位置の高さに関係なく巣立率が一定していることは高さについての好適位置があるといえる。

巣の樹枝上の位置は第3表のようである。前回同様に横枝の大枝から小枝が分岐して出ている基部に位置するものが最も多く、次いで幹から出した若枝が利用された。利用数の差は今回はごくわずかであった。他の露出した横枝や幹の又には少なく、この点は前回と同様であった。また、それぞれの位置での成功率をみると、前回とは逆に leader の方が横枝のものより高かった。前回と今回の両者を合わせた利用数は第4表のようである。横枝が全体の50%で最も多く、次いで若枝の29%である。その巣立率は、横枝44.8%、若枝22.3%で横枝の方が高かった。横枝に構巢数が多いことは、巣の構えやすさや安定性が大きいものと考える。以上、樹上の位置については、その構える高さや樹枝上の位置に選択の好みがあることが認められる。

巣の分布については、第1報（1966）で集団的傾向があることを述べ、その幾つかの例をあげておいた。ここでは、1962年から1969年までの8年間に常行寺オナガ群の日中行動区内でみられた47巣の位置についてみた。すると第1図のようになった。

<table>
<thead>
<tr>
<th>Table 2. Height of nest and the chicks fledged (1962～1969)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height of nest (m)</td>
</tr>
<tr>
<td>No. of nest</td>
</tr>
<tr>
<td>Chicks fledged</td>
</tr>
<tr>
<td>Chicks fledged per nest</td>
</tr>
<tr>
<td>Total No. of nest</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3. Nest site and the chicks fledged (1966～1969)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nest site</td>
</tr>
<tr>
<td>Horizontal-branch</td>
</tr>
<tr>
<td>Bough</td>
</tr>
<tr>
<td>Leader</td>
</tr>
<tr>
<td>Trunk</td>
</tr>
<tr>
<td>Other site</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 4. Nest site and the chicks fledged (1962～1969)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nest site</td>
</tr>
<tr>
<td>Horizontal-branch</td>
</tr>
<tr>
<td>Bough</td>
</tr>
<tr>
<td>Leader</td>
</tr>
<tr>
<td>Trunk</td>
</tr>
<tr>
<td>Other site</td>
</tr>
</tbody>
</table>

(27)
この図にみられるように巣は人家が集まっている行動圏内の西側に片寄ってみられ集団的である。それに対して中央部のインゴ園には例、東部のインゴ園では全くみられない。このように西側に片寄って集まることは、先述したようにオナガが庭木を選択することと、その営巣樹の分布が行動圏内の西側に片寄っていることにあたる。ここでは、集団化に好適な営巣条件が西側に偏って起こるという要素が考えられる。巣の集団化はこのような環境の規制を離れてものかどうか、本地域の調査からは知ることはできない。ただ、筆者の調査した西横田の例では、1965年には集団的に構えた（第1報参照）にもかかわらず、1966年には全く巣を構えなかった。これからすれば単に営巣樹の分布だけによるものでないと推察される。

3. 営巣

当地のオナガの営巣は、第1報で触れられているように5月下旬に開始され6月下旬および1月近くの春が認められる。ところでオナガの営巣行動を最初から観察までを通して見ることは、行動の観察者との無制限の了解を必要とする。以下断片的ではあるが、その時々の記録を経てその概要を述べる。

a. 営巣前の群の行動　営巣期が近づくと今迄一団で移動（第4報参照）した群の行動に変化が生じた。この時期での1日の群の移動を追跡した結果は次のようである。64. 4. 29の常行寺群の追跡では、午前4時32分の行動開始から午後6時55分までの停止までの間に2回分派

（28）
行動がみられた。第1回は、午前8時15分から同32分までで、群は15羽と4羽に別れた。第2回は、午後2時5分から2時40分までで群は13羽と6羽に別れた。別れた小群は、常行寺近くの営巣樹のある木立にとどまった。主群は水田を越した東のリノコ園にいた。また、65.5.5の例では、午前4時27分から午後6時45分までの間に3回分派行動がみられた。第1回は、午前7時40分から8時まで、第2回は午後12時30分から1時35分まで、第3回は午後2時30分から3時32分までであった。この他の時刻には全個体が同一経路をとって移動した。このように、巣造り期が近づくと群としての結合が弱まり個体独自の行動が強まる。

b. 巣と構造と材料

巣の構造は第2図又は写真2のようである。1）外観は写真に見られるように小枝で楕円形に構成されている。これらの小枝の長さは、No.5の巣のものでは30cmと前後であった。このうち最も長いものは48cm（カキ）であった。また、太さは6mm直径というものが最も太いものであった。用いられた枝の主な種類はリノゴ、モモ、カキなどであった。なお、巣底の枝組みは選択される枝の状況によって省略され状況に応じた評価が働いていることがみとられる。

2）内側の底は周辺に苔藓類、中央部にはほぼ円形に土が塗っているように硬く敷き詰められる。最も厚いところで2cm程度あった（写真2参照）。この効果は、保温と巣の強化に役立つと考える。巣内部に土を用いることは、ホシガラス、カケス（清輝1957）、また、巣底は異なるがカササギにもみられる共通した習性である。

3）土が敷かれた上に苔藓類、木皮、草根、枯葉などが積み重ねられる。この厚さは3〜4cmである。この産座の材料は、その営巣場所で使用割合が異なる。例えば、常行寺附近での1巣ではその多くは内張りを含めてシュロの毛芯で造られていた。それに対して、飯田一の鳥居座のものでは、少数の枯葉に苔藓類と草の根で構成されていた。

4）産座の内壁はスギ、シュロなどの木
皮や草の根などで巧妙に編まれて整えられている。ポルトガルではこの部分はヒツジやヤギの毛で裏打ちされるというSantos (1968)。
この点の差異は環境の相違からくるものであろう。以上巢の構造は1）外郭2）内部基底3）産座4）産座内壁というように構成されている。そして、巢造りの過程で環境に応じて構造の省略や材料の選択がなされている。巢の作成の順序はおよそ上記1)から4)の順序になされる。外郭の上部は産座の作成とともに進められる。
これらの巢材は、巢の周辺20m～30m 以内の庭や畑の地上および樹上から採取されるが、時には100m 以上も離れたところから小枝を運んできた例もある。運搬にはいずれも嘴でくわえて運んできた。巢の基底や外郭に使う小枝は、地上に折れて落ちたものや、剪定されて積み重ねられたものを拾い上げる場合と、樹上の枯枝を嘴で折り取る場合とがあった。No. 5 の巢のリングの枝は、その切り口からしてすべて剪定したもので、オナガが折り取ったものではない。したがって、この面からの果樹への被害は考えられない。
巢の大きさは、1 例として No. 59 の一卵在中（1967. 6. 9）の巣でみると次のようにあった。産座はほぼ円形で、内径9cm，外径15cm，深さ7cm であった。この結果は清樫（1957），Santos （1968）等の結果と酷似している。巣の大きさは浦本（1966）が述べていると同様に、オナガでも後述するような造巣活動から雌のからだの大きさことができる。なお、抱卵日が進んだり、雛の発育が進むと巣の形は次第に扁平になり、時には全く平になって雛が落下することがある。

c. 1 日の巢造り活動 No. 50 の巣では産座の材料を運ぶ時期（巣造り中期）にあたっていたが、この日（1966. 5. 15）の訪巣回数は、第5 表 a にみられるように午前中に集中し、午後には就塲までの約7 時間雌雄とも全く訪れがみられない。そして、午後4 時頃から群は一団になって移動し、群としてのまとまった就塲行動がみられた。また、No. 15 の巣での66.5. 29 の観察結果は第5 表 b のようであった。ここでは午前の朝方と午後に断続して訪れ、中途の時間は全くみられなかった。以上2 例とも巣への訪れは不規則であり、このような現象は短時間の観察でも同様であった。そこで、先に述べ述べた群の1 日の行動やことでみられた訪巣状況からみて、巣造りから産卵期に入る前の番の行動は、群に所属しながらそのなかで個体の行動をとるという二重構造をもっている。

巣造りに要する日数は、第3 図のようであり、初卵日を完成の日とすれば約2 過間を要するが個体差が大きい。このうち、No. 51 の巣では外郭構成中に1 卵が5. 25 に産みこまれたが、これは中途で消失した。

d. 巢造り行動 基部の枝選びの状況は次のようにあった。1966年5月15日林アカマツの枝
Table 5. Frequency of nest visits, time spent on nest (min.) and frequency of nest material carried.

a) 1966. 5. 15. Nest No. 55

<table>
<thead>
<tr>
<th>Time</th>
<th>A.m. 4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>P.m. 12</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>Nest visit</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Time spent on nest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Material carried</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Female</td>
<td>Nest visit</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Time spent on nest</td>
<td>3</td>
<td>13</td>
<td>21</td>
<td>22</td>
<td>22</td>
<td>10</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>Material carried</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Unknown</td>
<td>Nest visit</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Time spent on nest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Material carried</td>
<td></td>
</tr>
</tbody>
</table>

b) 1966. 5. 29. Nest No. 51

<table>
<thead>
<tr>
<th>Time</th>
<th>A.m. 4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>P.m. 12</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>Nest visit</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Time spent on nest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Material carried</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Female</td>
<td>Nest visit</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1 27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time spent on nest</td>
<td>18</td>
<td>15</td>
<td>10</td>
<td>5</td>
<td>2</td>
<td>19</td>
<td>1 70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Material carried</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Unknown</td>
<td>Nest visit</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Time spent on nest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Material carried</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3 Days required for nest building.

にすでに3本程度の枯枝が運ばれていた。午前8時頃2羽がその場で寄りそってキャイ、キャイと鳴き交わしているのを発見した。それから2羽で飛び去り、暫くして1羽が先にれて枯枝を嘴にくわえてやってきた。後から1羽がついてきた。先の1羽が無造作に枯枝を積み重ねた。その間ついてきた個体は隣りで体を寄りそうにしてキャイ、キャイ鳴いていた。雌雄の判別は不明であった。

内部の産座数りでは次のようであった。観察したいずれの巣でも雌は巣材を運搬し、巣内に置くと
Table 6 Breeding calendar of Blue Magpie in Nagano area.

<table>
<thead>
<tr>
<th>Year</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1966</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1967</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1968</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1969</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **E** = Early part
- **M** = Middle
- **L** = Last
- **X** = Accident
- **?** = Unknown
- **△** = Start of laying

Legend

- **Egg**
- **Chick**
- **Fledging**
- **Accident**
- **Unknown**
- **Start of Laying**

Table 6 Breeding calendar of Blue Magpie in Nagano area.
とともに巣に入り、体をすっぽり埋めて細かく左右に体をゆすったり、座りこんだままの姿勢でぐるぐる回ったりして巣の形をととのえた。このためか、尾羽のつけねがはっつけたり、先端が切れたりした。このほか、巣中に頭を突込んで嘴で内部を整えたりした。なお、何も持たずに来て座りこんでいることもあった。これが就巢行動の発現によるものかどうかは明らかではない。雌は、これに対して、巣材を運んで来たのはみられたが中へ入ってもすぐ出てしまい巣を整えることはしないようである。また、巣場所の決定、それにともなうnest invitation displayの存在については明らかでない。

B. 繁殖期間及び繁殖回数

第一報に引き続き1966年～1969年の当季で確認した30巣から第6表を作った。このうち産卵が確実で抱卵されていたものから人為的障害で中断したものを除いて21件について第7表を作った。これら第6表および第7表からみて、産卵期は5月下旬から7月下旬の約2月余りにわたっていることがわかる。さらに、第6表からすれば主たる産卵期は5月下旬から6月下旬の約1ヶ月間である。このことは、第一報の結果と類似しており、主たる卵期を5月下旬から6月下旬とおくことができる。前回および今回の調査でも主たる卵期からずれている例が認められる。

Table. 7 Breeding procedure

<table>
<thead>
<tr>
<th>Year</th>
<th>Nest No.</th>
<th>Start of Laying</th>
<th>Clutch size</th>
<th>Date of hatching</th>
<th>Incubation period</th>
<th>Brood size</th>
<th>Date of Fledging</th>
<th>Chick period</th>
<th>Unfertilized</th>
<th>Loss of Eggs</th>
<th>Died</th>
<th>Lost</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>1966</td>
<td>48</td>
<td>(5.22)</td>
<td>6</td>
<td>6.8</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>Unknown</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>5.27</td>
<td>5</td>
<td>6.15〜16.14〜15</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>53</td>
<td>(5.24)</td>
<td>8</td>
<td>6.15</td>
<td>7</td>
<td>7.3</td>
<td>2</td>
<td>18</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>54</td>
<td>(5.28)</td>
<td>7</td>
<td>6.19</td>
<td>4</td>
<td>7.6</td>
<td>4</td>
<td>18</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>7.3</td>
<td>6</td>
<td>7.23〜24.15〜16</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>(6.14)</td>
<td>7</td>
<td>7.5</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>57</td>
<td>(6.29)</td>
<td>6</td>
<td>7.20</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>58</td>
<td>(7.2)</td>
<td>5</td>
<td>7.22</td>
<td>4</td>
<td>8.1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1967</td>
<td>59</td>
<td>5.20</td>
<td>8</td>
<td>6.12〜13.16〜17</td>
<td>6</td>
<td>6.30</td>
<td>2</td>
<td>17〜18</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>61</td>
<td>6.24</td>
<td>6</td>
<td>(7.13)</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>63</td>
<td>(6.12)</td>
<td>7</td>
<td>7.3</td>
<td>5</td>
<td>7.21</td>
<td>4</td>
<td>18</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>(7.12)</td>
<td>5</td>
<td>(8.1)</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1968</td>
<td>66</td>
<td>5.24</td>
<td>7</td>
<td>6.15</td>
<td>15</td>
<td>5</td>
<td>7.3</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>67</td>
<td>(5.20)</td>
<td>8</td>
<td>6.12</td>
<td>6</td>
<td>6.30</td>
<td>2</td>
<td>18</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>Unknown</td>
</tr>
<tr>
<td></td>
<td>68</td>
<td>(5.19)</td>
<td>8</td>
<td>(6.11)</td>
<td>2</td>
<td>6.29</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>69</td>
<td>(5.26)</td>
<td>6</td>
<td>(6.10)</td>
<td>6</td>
<td>6.28</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>(5.22)</td>
<td>8</td>
<td>(6.15)</td>
<td>7</td>
<td>7.3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1969</td>
<td>73</td>
<td>(6.4)</td>
<td>7</td>
<td>6.27</td>
<td>6</td>
<td>7.15</td>
<td>5</td>
<td>18</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>74</td>
<td>(5.30)</td>
<td>6</td>
<td>(6.20)</td>
<td>1</td>
<td>7.8</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>(6.6)</td>
<td>7</td>
<td>(6.28)</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>76</td>
<td>(6.25)</td>
<td>6</td>
<td>(7.15)</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Av.</td>
<td>(5.19)〜(7.12)</td>
<td>6.7</td>
<td>6.6</td>
<td>6.28</td>
<td>15.4</td>
<td>4.9</td>
<td>7.7</td>
<td>1.5</td>
<td>17.9</td>
<td>0.8</td>
<td>1.2</td>
<td>0.3</td>
<td>2.8</td>
</tr>
</tbody>
</table>

(33)
Table 8. a. Dates of blooming and budding as compared with egg-laying of Blue Magpie

<table>
<thead>
<tr>
<th>Year</th>
<th>Cherry (Somei Yoshino)</th>
<th>Rattan (Noda, Fuji)</th>
<th>Gingko</th>
<th>Egg-laying of Blue Magpie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bloom</td>
<td>full bloom</td>
<td>The earliest</td>
<td>Average</td>
</tr>
<tr>
<td>1966</td>
<td>4.14</td>
<td>4.23</td>
<td>5.2</td>
<td>4.22</td>
</tr>
<tr>
<td>1967</td>
<td>4.13</td>
<td>4.21</td>
<td>5.2</td>
<td>4.28</td>
</tr>
<tr>
<td>1968</td>
<td>4.14</td>
<td>4.21</td>
<td>5.5</td>
<td>4.23</td>
</tr>
<tr>
<td>1969</td>
<td>4.16</td>
<td>4.22</td>
<td>5.5</td>
<td>4.21</td>
</tr>
<tr>
<td>Av.</td>
<td>4.14</td>
<td>4.22</td>
<td>5.4</td>
<td>4.24</td>
</tr>
</tbody>
</table>

Table 8. b. Average temperature from March to June (Data of Nagano local weather station)

<table>
<thead>
<tr>
<th>Year</th>
<th>Year</th>
<th>Month</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1966</td>
<td>4.3°C</td>
<td>10.3°C</td>
<td>14.5°C</td>
<td>18.9°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1967</td>
<td>3.8</td>
<td>10.4</td>
<td>17.0</td>
<td>19.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1968</td>
<td>3.9</td>
<td>10.5</td>
<td>14.7</td>
<td>19.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1969</td>
<td>2.0</td>
<td>10.5</td>
<td>15.7</td>
<td>18.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Av.</td>
<td>3.5</td>
<td>10.4</td>
<td>15.5</td>
<td>19.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

られるが、これらは障害にあって中途放棄したものの補充的なものと解される。

次に上記の21件について各年の早春産卵日および平均産卵日をみると第8表のようにある。
これからすれば産卵の中心は5月下旬から6月中旬にあり、第1報の結果と同一傾向を示している。また、全体の平均産卵日は6月6日で第1報の結果と全く同であった。次に、産卵日と植物の成育状況を比較すれば第8表のようなである。平均産卵日の遅い1967年ではイチョウの
発芽が他年より週間近く遅い。また、最早産卵日の最も遅い1969年では、桜の開花日が遅れているが、全体を通じて相関性は不明瞭である。

抱卵期間は、最終卵から数えて14日～17日であった。前回同様同一巢のなかでは孵化日数に
1日から3日の差があった。平均孵化日数は15.4日で前回の結果と同じである。巢内の育雛
期間は17日から18日でこれ前回の結果と同様であった。以上、巢造りから巢立ちまでの期間
は、第1報の資料を参照してみると、巢造り約2週間、産卵期4.6日、抱卵日数約15日、巢
中育雛期間17日～18日、幼鳥への給餌期27日となり、実にこの間約90日になる。したがって、
オナガの繁殖はすでにふれたように通常は年1回といえる。

C. 繁殖率

産卵数は営巣30件のうち21件について確認できた。それを第9表（a, b）にまとめた。1巢
当りの卵数は5から8卵で6卵が最も多かった。ついて7卵と8卵で、5卵は最も少なかった。
平均は6.6卵で前回調査の結果よりやや上回っている。最多卵の8卵は各年のいずれも早い
時のものである。これは前回の調査と同じ傾向を示している。また、産卵期の遅いものでは
卵数が減少していく傾向がみられる。月別件数でみると今回は5月が最も多く6月、7月と月
がついて来て少なくになっている。ポルトガルでは、卵数は7～9卵で10、11卵の例もあると
いう（Santos 1968）。

孵化率は第10表のようである。1腹の卵が全部孵化することは、今回の調査でも少なく全体

(34)
昭和46年（1971）6月 オナガの生活史に関する研究（7） 241

Table 9. Frequency of clutch sizes

<table>
<thead>
<tr>
<th>Year</th>
<th>1966</th>
<th>1967</th>
<th>1968</th>
<th>1969</th>
<th>Total</th>
<th>Frequency %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Clutch size</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

b) Frequency of clutch sizes by month

<table>
<thead>
<tr>
<th>Clutch size</th>
<th>Month</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>Teta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td>5</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2</td>
<td>3</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>7</td>
<td></td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>Frequency (%)</td>
<td>52</td>
<td>33</td>
<td></td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

Table 10. Hatching rate

<table>
<thead>
<tr>
<th>Clutch size</th>
<th>Brood size</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>Total</th>
<th>Eggs</th>
<th>chicks</th>
<th>Hatching rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td>40</td>
<td>28</td>
<td>70%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
<td>35</td>
<td>27</td>
<td>77%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td></td>
<td></td>
<td>48</td>
<td>30</td>
<td>62%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>15</td>
<td>13</td>
<td>87%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>21</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>21</td>
<td>138</td>
<td>98</td>
<td>Avg. 71%</td>
<td></td>
</tr>
</tbody>
</table>

の19%であった。このなかで雛が1，2羽というのは少ないもので、推計中に卵が失敗したものである。この失敗は1個から時計6個におよんだ。全体でみると卵は1個1.2個で前回の1.7個より下回っている。なお、1個卵が失敗したことは1例もなかった。未孵化卵は1個で平均0.8個であった。これは前回の結果よりやや上回っている。

孵化率がよかったのは5卵の87%で、次が7卵の77%，8卵の70%と続き、前回よかった6卵が62%と最も悪い。全体の孵化率は第10表にあるように71%で前回の第8表bの結果の68%とはほぼ同じである。孵化率の低下は62%の雛にみられた無精卵と、52%の雛にみられた卵の失敗のためである。これは第1報と同じである。失敗についての新しい知見は得られなかった。

巢立率は、第11表および第12表のようである。1卵の雛数に対する単位率は、100%のものは2羽の1例を除いて他にはない。巢立率のよかったのは、このほか4羽、1羽である。前回巢立率のよかった6卵、7卵の雛数の多いものは、今回は合わせて30%で極めて低くなってい

(35)
Table 11. Flying success from brood size

<table>
<thead>
<tr>
<th>Brood size</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
<th>No. chicks</th>
<th>No. Fledged</th>
<th>Fledging rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>21</td>
<td></td>
<td>4</td>
<td></td>
<td>18%</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td></td>
<td>3</td>
<td>1</td>
<td>30</td>
<td>11</td>
<td>8</td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>12</td>
<td>5</td>
<td>8</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td></td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>3</td>
<td>2</td>
<td>9</td>
<td>2</td>
<td></td>
<td>31</td>
<td></td>
<td>31.6</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>9</td>
<td>98</td>
<td>31</td>
<td>31.6</td>
</tr>
</tbody>
</table>

Table 12. Flying success from clutch size

<table>
<thead>
<tr>
<th>No. nest</th>
<th>clutch size</th>
<th>No. chicks (Av.)</th>
<th>Hatching rate</th>
<th>No. fledged</th>
<th>Fledging rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>8</td>
<td>5.6</td>
<td>70%</td>
<td>2</td>
<td>25%</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>5.4</td>
<td>77</td>
<td>3.4</td>
<td>49%</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>3.8</td>
<td>62</td>
<td>0.4</td>
<td>6%</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>3.8</td>
<td>62</td>
<td>0.4</td>
<td>6%</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>4.3</td>
<td>87</td>
<td>0.3</td>
<td>7%</td>
</tr>
<tr>
<td>Av.</td>
<td>6.5</td>
<td>4.7</td>
<td>71</td>
<td>1.5</td>
<td>22.5%</td>
</tr>
</tbody>
</table>

Table 13. The time of egg-laying

<table>
<thead>
<tr>
<th>Date</th>
<th>1966.5.21</th>
<th>66.5.21</th>
<th>66.5.22</th>
<th>66.5.24</th>
<th>66.5.25</th>
<th>66.5.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nest No.</td>
<td>Observation time</td>
<td>A.m. 7.10</td>
<td>P.m. 6.45</td>
<td>A.m. 10.05</td>
<td>A.m. 7.05</td>
<td>P.m. 5.30</td>
</tr>
<tr>
<td>47 No. of egg</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Date</td>
<td>1966.7.3</td>
<td>66.7.6</td>
<td>66.7.7</td>
<td>66.7.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nest No.</td>
<td>Observation time</td>
<td>P.m. 3.00</td>
<td>A.m. 7.18</td>
<td>A.m. 7.52</td>
<td>A.m. 7.26</td>
<td></td>
</tr>
<tr>
<td>55 No. of egg</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>1967.5.20</td>
<td>67.5.22</td>
<td>67.5.23</td>
<td>67.5.24</td>
<td>67.5.25</td>
<td>67.5.26</td>
</tr>
<tr>
<td>Nest No.</td>
<td>Observation time</td>
<td>P.m. 3.00</td>
<td>A.m. 7.25</td>
<td>A.m. 7.30</td>
<td>A.m. 7.25</td>
<td>A.m. 7.30</td>
</tr>
<tr>
<td>59 No. of egg</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

(36)
巢立率は全体に低率で卵からの段階からみると22.5%であり、7卵が最もよく49%であった。

D. 産卵、抱卵行動

1. 産卵状況と行動

卵は1日1個産んだ。これは第1報で述べたことと同様であり、その観察結果は第13表のようである。ところで産卵の時刻であるが、No. 47の5月21日から5月22日の様子をみると5月21日は午前7時10分以後に第2卵が産まれ、第3卵は午前10時以前に産まれている。産卵周期を1日（24時間）とすれば、No. 47の産卵時刻は日々の7時〜10時の間にあったと考えられる。これは5月24日の例からもいえる。

つぎに産卵に入りた雌雄の巢を中心にした行動例を述べる。

巢 No. 55 常行寺スギの木1卵在巢 1966年7月3日（暦）A.m. 10.50〜P.m. 5.00

<table>
<thead>
<tr>
<th>時 刻</th>
<th>観 察</th>
<th>記 録</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.m. 10.50</td>
<td>鳥には1羽もいない。周辺にも見えない。</td>
<td></td>
</tr>
<tr>
<td>A.m. 10.58</td>
<td>雌が巢へくる。絹の縁の綿を肩で呑み絹の巻きへ持ちこむ。巢をこむ。</td>
<td></td>
</tr>
<tr>
<td>A.m. 11.05</td>
<td>鳥の上で雌がギークイクと鳴く。絹の巻きに座りこんだ雛がさっと出ていく。雄のイチョウの枝つけしてシューイ、シューイという鳴き声を雄に対する激しくわしい courtship call が短く返される。この鳴きを繰り返しながら側面のケヤキへ移動し、再び絹の ★をもってくる。</td>
<td></td>
</tr>
<tr>
<td>A.m. 11.12</td>
<td>鳴声が止まり姿も見えない。絹の巻きにも見えない。</td>
<td></td>
</tr>
<tr>
<td>A.m. 11.17</td>
<td>集が雨くキュウ、キュウと鸣いて集の絹へたつ。後から雌がきて絹の巻へ座り込む。雌はスギの枝へ上っている。</td>
<td></td>
</tr>
<tr>
<td>A.m. 11.53</td>
<td>雉でる。行方不明雌雄とも。</td>
<td></td>
</tr>
<tr>
<td>A.m. 11.57</td>
<td>シューイ、シューイ鳴きながら西上方から絹へとりきて座り込む。</td>
<td></td>
</tr>
<tr>
<td>A.m. 11.59</td>
<td>雉が雨く絹に絹をからす。雌はすぐ去りスギの西の方へいく。雌はあたりを見廻わして絹を呑む。</td>
<td></td>
</tr>
<tr>
<td>P.m. 12.02</td>
<td>鳥の下へ1羽きてギークイクと鳴く。雌は絹に座り込んだままキュウ、キュウと鳴く。</td>
<td></td>
</tr>
<tr>
<td>P.m. 12.08</td>
<td>雉はしきりと周辺を観察する。</td>
<td></td>
</tr>
<tr>
<td>P.m. 12.12</td>
<td>ギーイと鳴き声がして雄が絹の縁に立つ。雌は座ったまま絹の巻きにふるわしてシューイ、シューイと喚をふり絹に鳴き雄の鳴を差し入れても鳴くようにして雌を取り下げる。雄が去る。</td>
<td></td>
</tr>
<tr>
<td>P.m. 12.13</td>
<td>雉はシューイ、シューイ鳴いて西へ出る。</td>
<td></td>
</tr>
</tbody>
</table>

以後、14時43分までの間に繰り返し絹果の求愛給餌が行なわれたが、以後雌は雨で降っていたか絹果は入らないかった。鳴き声を絹の近くの木立のなかにいたと判断される。産卵数の調査は午後1時20分に行ない1卵であった。以上、産卵期中は、雄と雌との間に求愛給餌がされ、絹果に就果の気分ができていること。しかし、絹果の防衛について警戒的な行動は顕著にはあらわれなかった。また、求愛給餌が直接的には交尾へ結びつかなかった。

2. 抱卵行動

産卵中の就果状況は、次のようにあった。このような状況を抱卵ということができるかどう
Table 14. Time of incubation by a female just after her laying of the first and the third eggs of the clutch

<table>
<thead>
<tr>
<th>Date</th>
<th>Nest No.</th>
<th>Observation time</th>
<th>Time of: Sessions</th>
<th>Recesses</th>
<th>Session in minutes</th>
<th>Recesses in minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1966.7.3</td>
<td>55</td>
<td>10.58 - 17.00</td>
<td>10.58 11.52 11.57</td>
<td>11.05</td>
<td>7 16</td>
<td>47</td>
</tr>
<tr>
<td>1966.5.22</td>
<td>47</td>
<td>9.45 - 13.00</td>
<td>9.45 9.55 10.11</td>
<td>11.5</td>
<td>10 4</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 15. Incubation and brooding rates in three females

<table>
<thead>
<tr>
<th>Female</th>
<th>Incubation or brooding</th>
<th>No. of: Sessions</th>
<th>Range</th>
<th>Average</th>
<th>Range</th>
<th>Average</th>
<th>Constancy %</th>
<th>Time of day: Morn. Mid. Eve.</th>
<th>Hours(h): minutes(m) watched</th>
<th>Average air temperature °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>11th day</td>
<td>7 6</td>
<td>15-104</td>
<td>47</td>
<td>2-11</td>
<td>4.8</td>
<td>90</td>
<td>× ×</td>
<td>5h 11m</td>
<td>23°</td>
</tr>
<tr>
<td>49</td>
<td>5th day</td>
<td>5 5</td>
<td>23-130</td>
<td>66.2</td>
<td>2-10</td>
<td>5.8</td>
<td>92</td>
<td>×</td>
<td>6h 0</td>
<td>—</td>
</tr>
<tr>
<td>55</td>
<td>2nd day</td>
<td>17 16</td>
<td>3-19</td>
<td>16.2</td>
<td>2-12</td>
<td>4.8</td>
<td>77</td>
<td>× ×</td>
<td>5h 32</td>
<td>24.5°</td>
</tr>
<tr>
<td>55</td>
<td>4th day</td>
<td>3 2</td>
<td>45-52</td>
<td>49.5</td>
<td>2-3</td>
<td>3.5</td>
<td>95</td>
<td>×</td>
<td>1h 44</td>
<td>21.0°</td>
</tr>
<tr>
<td>55</td>
<td>6th day</td>
<td>9 8</td>
<td>9-30</td>
<td>17.5</td>
<td>2-5</td>
<td>3.8</td>
<td>82</td>
<td>×</td>
<td>2h 50</td>
<td>25.5°</td>
</tr>
<tr>
<td>55</td>
<td>8th day</td>
<td>20 19</td>
<td>5-24</td>
<td>12.8</td>
<td>2-23</td>
<td>6.4</td>
<td>66</td>
<td>× ×</td>
<td>6h 6</td>
<td>25.0°</td>
</tr>
<tr>
<td>55</td>
<td>9th day</td>
<td>17 16</td>
<td>1-33</td>
<td>15.8</td>
<td>2-12</td>
<td>6.3</td>
<td>71</td>
<td>× ×</td>
<td>5h 57</td>
<td>25.0°</td>
</tr>
<tr>
<td></td>
<td>Brooding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>1st day</td>
<td>13 12</td>
<td>2-11</td>
<td>5.4</td>
<td>1-18</td>
<td>8.2</td>
<td>41</td>
<td>×</td>
<td>2h 43</td>
<td>27.0°</td>
</tr>
<tr>
<td>55</td>
<td>2nd day</td>
<td>13 12</td>
<td>2-26</td>
<td>11.6</td>
<td>3-30</td>
<td>7.7</td>
<td>60</td>
<td>×</td>
<td>3h 42</td>
<td>28.0°</td>
</tr>
</tbody>
</table>
高いものは夕刻近くのものである。また、最も高い4日の例は、他の日の同じ夕刻よりも気温が3度近く低く、小雨が降っていた日である。このようなことから在巣率は、前回指摘したように気温、天候などが影響している。

孵化後の在巣率は、今回は41％、60％であった。41％の場合は雛1羽、卵4個、60％の場合は雛3羽、卵2個であり他の卵が残っているにもかかわらず在巣率は低下している。しかも、41％の場合は、小雨が降っていて気温条件のわるいときであった。これらのことから、雛の孵化が雛の抱卵行動に別行動を起こす刺激を与えるものによると考えられる。

E. なわばりおよび行動図

非繁殖期には群生活をするオナガは繁殖期になわばり（ある防衛された地域）をもつのか、もつとすればどのような形のものか。オナガの生活史の調査を始めた時からの興味ある問題であった。この点について、今日までに知り得たことを繁殖の段階に従って述べる。

1. 営巣期 前4図のように

No.50の巣では巣の周辺で防衛行動がみられた。ここでは、巣の周辺約1mに雄があっているとき接近した個体は攻撃を受けた。雄に他個体が接近すると雄は尾羽をゆっくり上下に動かし緊張

Fig. 4 Territorial behavior during nest building period

Fig. 5 Home range of female during egg laying period
246

山階鳥研究 第6巻第3号(No.35)

状態を示し、つぎに相手をさっと追った。追い距離は短かく、互いに組み合ったり、突つき合うような闘いはみられなかった。この防衛行動は、巣の近くにいるときだけであり、巣を離れではみられなかった。

2. 孵卵期 第5図は孵卵期の No.28 の雌の行動範囲の1例である。調査は65年6月23日から6月28日にわたってその位置を5分ごとに地図上に印した。この日雌はひっきりなしにキユイ、キユイと鳴き続け雄からの給餌を受けた。雄への給餌行動により雌の位置も知ることができた。この雌の行動範囲のなかには別に1つの抱卵中の巣があったが両者の間に全く違いは見られなかった。また、この No.28 の巣の周辺を通るものに対しても何等の反応を示さなかった。抱卵中の巣の個体が防衛行動を示さなかったことは No.47、No.55 の巣の観察でも同様であった。

3. 抱卵期 第5図の No.27 では抱卵中 No.28 の巣が2m 近くまで接近して、求愛鳴きを繰返したが雌は巣のなかでじっとしていた。雄もまた巣を防衛するようなことはなかった。この時期には他の巣例えば第1報 Fig.2 の 2)西横田、4)南原の巣も巣周辺での防衛行動はみられなかった。ところが、No.50 の巣では抱卵中の雌の周辺1.5m 程離れたマツ枝に別の香が巣を飛び出した。筆者が発見したときは巣の下部ができた。これに対して抱卵中の No.50 の個体が巣近くへとる巣作り中の個体を追った。結局この巣はさくらに放棄してしまった。また、抱卵中の雌の行動範囲をみると第5図のようである。調査期間は1967年5月29日〜6月9日で主として午前7時から8時までの間にわたった。胸には赤く着色した。雌は、殆ど巣の近くにいることがわかった。しかし、ここで雌の巣防衛行動はみられなかった。採食以外は、近くの樹木の梢に止って休み、カラスが接近したり、観察者が巣へ接近すると他の個体もまって攻撃した。種内の各個体間での防衛行動はみられなかった。

4. 育雛期 第7図にあるようにその採食地、巣附近での侵入、出合に際して防衛行動は見られなかった。これは、第1報 Fig.2 の各巣の間でも同様であった。

以上、繁殖段階を通して防衛行動が観察されたのは巣作り中と、抱卵中の巣の近くに営巣しようとしたときであり、他の時期では、その巣の近くを通過したとか、枝にと
Fig. 7 Home range of parents during feeding period

まったとか、飼うとったかどうか、防衛行動はみられなかった。すなわち、オナガのわばりは巣のまわりのしか営巣という特定の段階に限ってみられるものである。これは、おなじカラス科のハシボソカラス（羽田，飯田1966）やカササギ（久保浩洋1959）とは極めて対照的である。巣の集団性，害防への防衛とあいまって，オナガのこのような形のテリトリ－の存在は，群れ生活を営む特性をあらわしていると考える。

摘要

1. オナガの生活史のうち繁殖期の生活を1966年から1969年の間長野市川中島町を中心に調査したので報告する。
2. 営巣樹は23種におよんだ。70件のうちカキ（19）をはじめとして，スギ，アカマツ，イチイ，リンゴなどが主に使用された。同一木について4回も利用した。
3. 巣の位置は地上2 m から10 m の間あり，4 m～8 m の位置が多く使用された。また枝は横枝と幹
A study of the life history of Blue Magpie 7
Breeding ecology 2

Tetsuo Hosono

1. Breeding ecology of Cyanopica cyana studied during 1966–1969 in Nagano City area is reported.

2. Seventy nests were found in 23 species of trees. The percimon was most often used (19 nests) and other trees used were cryptomeria (8), red pine (7), Ichii-tree (6), apple tree (6), maple (4), etc. A Ichii-tree standing at favorable spot was used four times.
3. The nest site differed from 2~10 m above the ground, most often 4~8 m, and the nest was placed more often on a horizontal branch or a leader. The fledging success was best (44.8%) from the nest of horizontal branch.

4. The nests were found grouped at the western portion of the flock home range, probably subject to the distribution of preferred nesting trees, and orchards were not so used though extensive.

5. The nest is cup-shaped, constructed with external small twigs, some soil at the bottom, and lined inside with moss. The nest material were either picked up from the ground or taken from branches, not far from the nest site.

6. Nest-building pairs did not depart from the flock and worked only some time of the day while acting as members of the flock.

7. The male carried nest material but not worked for nest-building, while the female did the both.

8. Breeding procedure consisted of (confirming previous report), 2 weeks of nesting period 6.5 days of egg-laying period, 15 days of incubation period, 17~18 days of feeding period, 27 days or more of family life (feeding fledglings), some 80 days in total.

9. The clutch size ranged 5~8, average 6.6 eggs. Large clutch size of 8 eggs were found during early season in May and delayed clutches were smaller.

10. The hatching rate was 71%, the average fledging success being 22.5% from egg, and 31.6% from chick (66.5% in previous study). The best fledging success was 49% from the clutch of 7 eggs. The factors concerned are discussed.

11. Time and behavior of female’s egg laying, courtship feeding and incubation behavior are described. The attendance rate of incubation was 66~95% varying by weather, temperature etc.

12. Only nest-site territoriality was noticed during nest-building period. In other time there was no territorial behavior except an incubating pair chased the other pair which intended nest-building close to them.