単分子膜の存在が確定するまでの歴史について

立花太郎

1 はしがき

化学の歴史のなかで単分子膜あるいは単分子層の概念を確立したのはアメリカの物理化学者Irving Langmuir（1881—1957）である。彼がこの概念を確立できたのは、たまたま不均一反応の研究から研究者としての第一歩を踏みだしたという偶然もさることながら、一番重要な点は原子間あるいは分子間に働く力の本性を物理的な面でに化学的両面から詳しく考察したことによるのである。

この研究の過程は彼の残留した数多くのすぐれた論文の中でも最も重要な業績である「固体及び液体の構造と基的な性質」（1916，1917）とに詳しくまとめられている。

今日、大学の一般教育課程の化学教科書にも出てくるLangmuirの吸着等温式の説明と水面上の単分子膜のこと、その論文から引用されているものである。幸いにして上記の論文は邦訳（1992）されていて、容易に読むことができるが、原論文は2部にわかれ、合計130ページにおよぶ厚大な論文である。

わたたくしは自分の研究が界面化学に傾いているので、これまで数度この論文を読む機会があった。そしてそのたびに感銘を新たにしたもののである。特にこの論文の冒頭の文章は印象的である。ここを掲げておこう。

"W. H. Bragg, W. L. Bragg の（結晶構造を決定した）業績の化学における重要性は必ずしも一般にはよく認識されていない。数年前、この国 (アメリカ) における W. H. Bragg の二つの講義をきいて、著者はこの業績が化学の分野にも非常に大きな意義に深い感銘を受けたのであった。Bragg 父子によって発見された結晶の構造は、化学力 (化学結合力) の本性に関して新たなとしてきっちり明確な概念に導くものである。

著者はついに日頃から、この新しい概念を自分の不均一反応に関する研究、どこに吸着および表面張力の现象の研究に適用するように努めてきた。こうして、いまだに著者は蒸発、凝縮、液化、吸着および表面張力現象の機構について多少とも明確な理論をもう立てる方向に研究を進めていった。"

2 Langmuirが単分子吸着に出合うまでの過程

Langmuir は1903年コロンビア大学鉱山学科を卒業後、ドイツの Göttingen 大学に留学し、Nernst 教授の指導で学位論文の仕事をした。それはネルンストランプとよばれた一種の白熱灯の基礎研究であって高温に白熱した固体直近の気体の挙動に関するものであった。そのとき彼は加熱された金属線の付近の気体の解離反応とそれによる熱損失を研究したが、それは間もなく彼の科学者としての後年の業績へつながることになった。

帰国後の彼はやがて1909年、General Electric Co.（いわゆるG.E.）の研究所に入所して研究者として自立してゆくのであるが、その間のことばは彼の伝記物語に詳しく書かれている。当時はちょうど金属フィラメント電球が開発されたばかりで、研究所はそれを実用化に取り組んでいた。特に問題となっていたのは金属のフィラメントがすく切れてしまうことであって、彼もその原因の究明のための基礎研究に参加した。

そうした研究の途上で、彼は非常に低い圧力の水素ガスの中で金属のフィラメントに電流を通して加熱するとき水素分子が原子に解離し、生成した水素原子が容器のガラス表面に吸着される現象を見出した（1912）。この当時、一般に信じられていた吸着理論によると、吸着現象とは、あたかも地球上の重力に引きつかれて大気の層がつくられているように、固体の表面をそれぞれ接触している気体分子を引きつけて表面に近いほど密度の大きい気体の層をつくることであるとされていた。この理論によれば気体の圧力が低くなれば、それだけ吸着量も次第に小さくなってゆくはずである。

ところが実験によると極低圧の水素ガスの中生じた水素原子ガスはきわめて低密度であるはずなのにガラスの表面には水素原子が飽和吸着し、その厚さはちょうどガラスの表面を水素の1原子層でくまなく覆う量である

A Short Historical Review on the Study of Monomolecular Films.
Taro TACHIBANA 弥西学教授, お茶の水女子大学大学院人間文化研究科客員教授 理学博士
著者紹介 前お茶の水女子大学教授。【専門】物理化学。【連絡先】112 東京都千代田区 3-36-21（自宅）。

第28巻第4号 (49) 357
ことが認められた。これは水素原子が大きな活性炭力で吸着するものと解釈された。

低圧の酸素ガスの中でディスペンションのフィラメントに電流を流して加熱するときにはフィラメントに酸素原子が1原子層となって吸着する現象も見出された。それはW02という化合物の生成とは区別された。

高圧のフィラメントの表面で起こる現象はさらに二酸化炭素中で炭素フィラメントを加熱するとともに観察された。このとき表面にC02→C02+Oの反応を生じ、発生したO原子はCフィラメントの上で図1のように吸着することが示された。この場合C02は表面で一定の向きをとっている。界面化学において重要な配向吸着の概念はこのような考察から生じてきたのである。

図1 炭素フィラメントに吸着された酸素原子。
吸着した酸素原子と表面の炭素原子の结合力は一種の化学結合力であることを示す図

これらの例は今日からみると、いずれも古典的な化学吸着に属するが、このように研究を行っているときにLangmuir は Bragg の結晶解析の結果を知り、それから、それまで、重力や静電気力のような力と同様の扱いをされていた原子間力、分子間力には常に化学的の効果が入っているという新しい考えを提出して一般に結晶面に起こる吸着は化学的分子間力によると考えた。化学的な力は、きわめて近距離だけに働くとされているので、吸着力そのものは化学的であるとする吸着が単分子層であるという考えは、ごく、自然に導かれてくるのである。

3 物理的な分子間力と化学的な分子間力

Langmuir が加熱フィラメントに接触する気体の挙動の研究をはじめた1910年代の初め頃は固体や液体の相性一観水、蒸発、溶液、結晶化、吸着、表面張力などは純粋に物理的な現象であるとされ、化学者の物性への関心をもってこれらの現象の物理学的関係だけにとどまっていた。

一方、物理学者は上記のような物性は原子（分子）間力の関係を問題としていたが、その定式化にはまだ成功していなかった。原子（分子）間力は重力や電気力のように距離の関数として考えられたが、この考えは実際気体の状態式の導出には有効な成果を収めたもので上記の物理の物理学的研究と热力学的段階にとどまっていた。

これに対して化学者の興味は化学反応に関するものであり、吸着は分子間の相関をさらに考慮したときに初めて生ずるものと理解されていた。そして分子は化学構造から想像されるような複雑な構造をもっていて、分子の中の異なる部分に対しごち別の反応性を示す（つまり分子内には脱着基がある）と考えられていた。この場合の分子間、あるいは分子間に働く力が化学的力とよばれていた。このような化学的分子間力は当然、物性と強く関係しているはずであるが、物理学と化学は別の分野でそれぞれの本領を発揮し研究が進めていたが、19世紀の段階では物理的な問題は発展することはなかった。距離の関数として引きあう、かつ運動する物理的分子と、反応と構造をもつ化学的分子の二つの分子像を一つに統合したと考えて液体と固体の基本的な性質を考えたのがLangmuirであった。その意味で彼を現代化学の先駆者と位置づけることができるであろう。

4 分子（原子）間力と物性

分子構造がX線結晶解析によって決定されるまでの化学式あるいは化学構造式は化学反応に関する事実関係を元素記号の幾何学的関係に転化した一つの抽象的モデルと見なされる。このモデルの有用性はきわめて強力で、これを古典的化学構造論はそれを組み立てて体系づけた。それにかかわらず原子分子はたとえ定常的な存在であったために原子の実在をめぐるOstwaldとBoltzmannの有名な論争（1871）も起こったのである。

Bragg父子による結晶構造の決定は事態を一挙に明るみに出すことになった。この結果の重要性は物理学者としても、いち早く認識したのがLangmuirであった。彼はまず結晶内の原子の配置が化学的で示されるとそれとは矛盾していないが、原子価から予測される通りの配置ではないことに注目し、原子（分子）間力について改めて考察するようになった。たとえば塩化ナトリウムの結晶におけるNa原子とCl原子の配置はNaClという分子の存在を示すものではなかった。しかし、この結果を加熱すると塩化ナトリウムは気化し、その中にはNaClという分子が存在することから、この場合の蒸発は単純な物理現象ではなく、一種の化学的現象である。同じ理由で熔固も化学的分子間力による化学現象である。

塩化ナトリウムの結晶におけるNa原子とCl原子との配置にNaもClも1個の原子であるという化学の結論が現れていない。この原子間力の特性についてLangmuirは当時、化学の世界に新しく導入されて注目を浴びていたWernerの配位説が適用できるものと考えた。
えた。
その考えによれば原子が一次原子価によって結合したとしても、原子には未だ二次原子価（残余原子価）があり、それによって分子化合物（錯体）が生成するのである。塩化ナトリウムの結晶の中の Na 原子と Cl 原子との结合力の本性はそのような二次原子価によると考えると、これも一種の化学的原子間力である。それで結晶の吸着力も化学的力によるということができる。Langmuir はこのような考えを吸着力の本性にまで拡張して吸着現象も一種の化学現象であるという確信を深めた。

5 単分子層吸着式

これまで述べたような実験的な事実と原子間力の化学的考察から Langmuir は有名な単分子層吸着式を、きわめて簡単な手法で導いた。それを 1916 年の論文の中に発表したときの形で示す次のようになる。

$$
\theta_i = \frac{\alpha \mu}{\rho_i + \alpha \mu} 
$$

（1）

$$
\theta_i 
$$

は吸着分子による表面の占有率、$$
\rho_i 
$$

は表面が完全に覆われているとした場合の吸着分子の蒸発速度、$$
\alpha 
$$

は表面が原子間力の衝突速度である。

等温の化学教科書に記されている、この式の初歩的誘導は Langmuir の論文の通りである（もっと洗練されただけ統計力学的誘導は Fowler7）。この後初めて発表された。計算の手順は教科書に譲って、ここでは計算の前提となった案、三の予備的考察だけを述べておくこと。

まず固体の表面は結晶内部とはとんど異ならない構造になっていると仮定する。したがって固体の原子は二次元の格子に並んでいることになる。原子間力の作用範囲は結晶の圧縮率の値から推定すると原子間の平衡距離を 0.6 A だけ増大させれば無視できる結果になったので固体表面の原子間距離は内部のそれとはほとんど変わらないとしたのである。したがって、表面付近で原子配列が連続的に変化するような表面層（移動層）の存在は考えられない。気体分子が固体表面へ衝突すると、分子は表面の原子に吸着するが、その力は結晶の凝集力と同様の化学的の分子間力と本質的に変わらないと仮定された。

そこで、分子と固体との衝突は非弾性的である吸着が起こると考えたのである。

Langmuir は固体表面にできる最初の 1 層の吸着層のみに限定し、さらに気体分子が衝突して 2 層ができる可能性を全く無視していない。第 1 層と第 2 層の分子間の力は結晶の原子と第 1 層の気体分子との間の力よりは充分小さいので第 2 層はできてもその蒸発速度が早いうねって事実上第 2 層の存在は無視できるとした。

第 2 層以上の存在を想定した多分子層吸着の理論は、Langmuir 自身もいずれ発表するとながらもその報告は出されていない。それは 1938 年に Brunauer, Emmett, Teller によって計算された。それが今日の BET の式である。

単分子層吸着は最初は水素原子の吸着という典型的な化学吸着で説明された。吸着力はすべて化学的分子間力ということからは窒素のような不活性な気体分子の吸着も単分子層吸着になるはずである。

吸着等温式（1）はどこまで実験と一致するのであろうか。この式は未だ確立されていない。そのような実験データはこの式が発表された当時もまだ得られておらず、それは Langmuir は自らの発見でその平らな歪曲面の吸着現象を行い、実験値が見事に等温式の上に乗ることを確かめることができた。なお式（1）は高圧の気体とか孔構造の固体（木炭など）を用いたときには適用できない。その場合には気体の凝縮することが起こる可能性も生じてくる。

単分子吸着層の概念はこのようにして確立されたが、それは単に実験事実から結論されたものではない。結晶構造と Werner の配位説をもとに分子間力に対して新しく化学的視点を加えて現象の本質をよく理解した Langmuir の示した機構説によって導かれたのであろう。またそのような理論の上に立てられ研究されたものこそ、それはさらに次の節以下で述べるような発展を示したものである。

6 水面上の単分子膜

Langmuir は水が固体表面に吸着するものと同じ機構が水面上に油が単分子膜としてひろがるときにも働いているという予想をもった。すなわち、そこでは油の分子と水の分子とが化学的的吸着力で結合していると考えたのである。気体の吸着の研究から水面上の油膜の問題へ目を移した経緯は彼は 1934 年、電気学会の招きで来日したときの講演で次のように述べている。

“私は Marcelin の論文を読んで水面上の単分子膜に興味をもつようになった。それは固体上の単分子膜とよく似ているからである。この不鍵性の油膜の研究を進めることにより、そこに作用する力の本質が明らかになると考えた。”

フランスの Marcelin の論文9（1914）というのは水面上の油の薄膜の厚さについて研究した結果を述べたものであるが、Langmuir はこの論文を通じて水面上にひろがった油の膜について既にドイツの Pocksels 講、イギリスの Rayleigh、フランスの Devaux、Marcelin、Labroust らが詳細な観察を発表しており、単分子膜と
い概念も Rayleigh が提出していることを初めて知った。この種の研究は、当時はほとんど注目されていなかった。それらは小さな個別の研究以上のものとは思われていなかったが、Langmuir にとってはきわめて興味ある研究であった。彼は水面上の油のひろがりという表面張力に関係した「物理的」な現象を実は化学的な分子間力に基づいて起こっていると考察したのである。それ以降に Bragg の X 線結晶構造解析の結果を見て、その化学への重要性を感じたときの感銘を再び薄膜の論文を見て新たしたものではないようか。

彼は 1916—17 年の論文の第 1 部で Bragg の結晶構造の解析結果を詳しく紹介しながら、原子間力について独自の見解を示したと同様論文で第 2 部論文に水面上の油膜に関する過去の文献を詳しく紹介した。そして油が水面上をひろがるのは油の分子と水の分子との間に化学的な分子間力によるものであるという理論によって先人の提唱した単分子膜の存在を根拠づけたのである。

7 Bayleigh の研究（1899）
植物油のごく小量を広い面積の、清浄な水面上に置くと、油は油滴となって水面上に浮かぶと同時にそこから油が水面上をひろがって油の薄い膜で水面全域を覆う。しかし油のひろがりに限度があって、ある一定量以上ひろがると、そこで油のひろがりは停止し油膜と油滴は平衡になる。このときの油膜は単分子膜である。Rayleigh はオリーブ油を水面上に油滴ができないように小量において油膜をひろげた。その後、油膜の面積を縮小させながら表面張力や傾斜した結晶、油膜が最初ひろい面積にひろがっているときには清浄な水面上とほとんど同じ表面張力を示していたのに、ある面積以下に縮小すると表面張力は急激に減少して油の未変の表面張力に近い値を示すようにすることを明らかにした。その限界の油膜の厚さは 10 Å であった。Rayleigh はこの数値が気体分子の大きさについて当時推定されていた値とほぼ同程度であることと着目して、この油膜の圧縮による表面張力の急激な変化を次のように考えた。広い水面上の油膜は油の分子が 1 個ずつ水面上にまばらに浮いているので、その表面張力は水のそれほど変わらない。表面積を縮小してゆくと油の分子は水面をぎゅっとつまって覆うことになる。このときの油膜の表面張力は油自体のそれとほとんど等しいと考えても不自然ではない。表面は油の単分子膜で覆われているからである。そしてそのときの油膜の厚さは、とりも直さず油分子の直径（分子を球形として）の大きさを意味する。Rayleigh は油膜に関する論文の中で、この現象を物理を巡らし見なす理論では説明がつかぬことであって“その説明には分子を直接考える必要があることは明白である”と述べている。これと文献の中に単分子膜概念の現れた最初である。Rayleigh の研究はフランスの Devaux, Marcelin らによって受けつけられた。彼らはきわめて簡単な装置で色々な膜のひろがりを調べた。Langmuir がたまたまその一つを見たので、水面上の単分子膜の研究に関心をもつきかせたのである。

8 油が水面をひろがる原因についての Langmuir の考察
油が水面上にひろがるのは熱力学的には表面の自由エネルギー（表面張力）の関係から理解できる。しかし Rayleigh の結果の説明はそれだけでは不十分である。

油が単分子膜としてひろがる現象を分子論的に見直して、固体表面上に単分子膜状態が生するもと同様の化学的な分子間力が油分子と水分子間に作用して単分子膜ができるとしてみよう。

化学的な分子間力というのは分子どうしが分子全体で引きあう力ではなく分子の構造の中のある部分特定で引きあう力である。その引力の作用範囲は約 0.6 Å である。油の分子が水と引力を及ぼし合うのは特定の原子群（今日の言葉でいえば親水性）であり、残りの炭化水素鎖は水と引きあうことで、炭化水素鎖を親和力と見なし、これに考えてみると油分子はすべて親水基を介して水分子と接触し、炭化水素鎖は相互に擬合する。そうなると油は水面上で単分子膜の状態をとるとする。これが油のひろがる原因と解釈できる。

分子が緊密に集まって単分子膜をつくっているときは炭化水素鎖は水面に出てこないようになる。もし油の分子の炭化水素鎖が構造式から想像できるように実際に細長い形をしているとするとそれが水面上に直立し並ぶ。つまり油の分子は単分子膜の中で一定の向きをとって並んでいる（配向している）ことになる。この配向は化学的な分子間力から自然に誘導されてくる効果である。配向があれば緊密な単分子膜の表面は炭化水素そのものの表面と同じになるであろう。Rayleigh の表面張力の結果もほぼそなっている。

9 分子の形
Langmuir が単分子膜の研究を発表した 1917 年当時、結晶構造解釈は簡単な構造の無機物質だけにしか行われてはいなかったので、油の分子の形は全くわからんでいた。しかし Langmuir は油の分子の形は配向単分子膜から決定できるかもしれないと予想した。単分子膜の分子が水面に密に覆ったときの分子 1 個あたりの占有面積を求めるとき分子の断面積が計算でき、その平方根
はしば分子の一方向の長さを表す。また単分子膜の厚さは分子の長軸方向の長さ、つまり炭化水素鎖の長さとなるはずだから、両者を比較すれば分子の形がわかるであろう。

ここで Langmuir は構造式で書くと長い炭化水素鎖は実際の分子の形としても細長いかどうかが単分子膜の実験で証明できると考えた。“もし、この断断面の平方向が膜の厚さと著しく異なれば、分子が球形ではないという直接の証明が得られる”ということになるわけである。

今世紀の初め頃までに多くの有機化合物の化学構造式が決定されていたが、分子の形そのものを知る方法はX線結晶構造解析ができるまでには全く知られていなかった。分子の実際の形は構造式と関係深いと想定されていきものので、原子の存在そのものをさ、Laue の実験や Perrin の実験がでるまでは実験的根拠を欠いていたのである。

Langmuir は分子の形をきめるために予備実験にかかった。この場合、試料としては化学構造の簡単な、そして純粋な物質が選ばれた。実験方法は Marcelin の行ったようにに水槽と仕切板を用意すればできる簡単なものであった。各の種目で和飽和脂肪酸の結果だけを示すと次の表 1 のようになる。パルミチン酸（C_{16}）、ステアリン酸（C_{18}）、セロリ酸（C_{20}）の三つの飽和脂肪酸、分子内の炭素数は順に増加するにもかかわらず、いずれももほぼ同じような面積を示しているが、これはどの酸でも親水基のカルボキシル基がほぼ同じ面積を占めていることを示している。表面に垂直方向の分子の長さをみると分子は非常に細長く伸ばして炭素数が増加するほど長くなっている。もちろん、この予備実験はきわめて粗い測定値であるが、Langmuir はこの結果は理論的要求通りに分子がその長軸を垂直に立てて表面上に整列していることを証明する”と述べている。彼はこのあとで独自の表面圧力計を考察して、これより精密なデータをとるのであるが結論は変わらなかった。

<table>
<thead>
<tr>
<th>物 質</th>
<th>化 学 式</th>
<th>断面積</th>
<th>丢失面積</th>
<th>長さ</th>
<th>C-C間の長さ</th>
</tr>
</thead>
<tbody>
<tr>
<td>パルミチン酸</td>
<td>C_{16}H_{33}COOH</td>
<td>21</td>
<td>4.6</td>
<td>24.0</td>
<td>1.5</td>
</tr>
<tr>
<td>ステアリン酸</td>
<td>C_{18}H_{37}COOH</td>
<td>22</td>
<td>4.7</td>
<td>25.0</td>
<td>1.4</td>
</tr>
<tr>
<td>セロリ酸</td>
<td>C_{20}H_{41}COOH</td>
<td>25</td>
<td>5.0</td>
<td>31.0</td>
<td>1.2</td>
</tr>
</tbody>
</table>

このような単分子膜研究の結果から化学構造式は実際の分子の形を表しているという重要な結論が導かれている(1)。長鎖脂肪族分子の形と大きさは 1927 年 Muller(2)によって初めて結晶解析から決定された。そのとき配向単分子膜の存在は初めて直接的な確たる根拠をもったのである。

10 総括

単分子膜の存在は二つの異なる面から独立に想定された。一つは 1899 年、Rayleigh によって水面上の表面張力に関する現象を説明するために、他の一説は 1912 年、Langmuir によってガラス管の中に水素を入れて金属フィラメントを加熱したときの水素の拡散を説明するために導入された。Langmuir は両の結果が共通の原因によるものとして単分子膜の存在を根拠づけた。その後、単分子膜が界面現象を支配していることが明らかとなった。それは彼の次の考察に基づいて研究を行ったが、ある分子間の相互作用に対し、物理的な分子間力に基づく現象と考えられていた構造、蒸発、結晶化、吸着、表面張力などの、いわゆる物理現象は実は物質の化学構造式を考慮に入れた物理化学の現象であるということが(1)、分子間力は 0.6 k の近距離だけしか作用しないこと、(2) 化学構造式内の原子の形をある程度表していること、(3) 酸化物は特有の原子が物質に関係していること。例えば炭化水素鎖は親水性の原子、カルボキシル基、水酸基などの親水性の原子であること、(4) 吸着が特定の原子団を介して起こるので分子の配向が生ずることなどである。Langmuir 以後の界面化学の発展は、すべて彼のこのような考察をもつものである。単分子膜概念の展開の歴史はまた分子論的現代化学の歴史でもあった。

この小文は文献 1) の解説が主体となっているためにその評価である文献 2) の文章を適宜、引用した。実験に関する詳細は酸化の部で省略した。Langmuir の業績の背景は物理化学が別個の学問領域であった 19 世紀からの古い伝統の影がまだ色濃く残っていた今世紀の 10 年代であったという話を聞いてみよう必要がある。本文中の化学的分子間力というのは原子の化学力という要素を含むものであるが、現代の分子論の説明は、あてて記されていない。

参考文献及び注
3) A. ローゼンフェルド, "兵庫県大" 兵庫県子論文 "ラングミュア論", アグネ (1978).
6) NaCl の結晶中の Na と Cl がイオン化していることと当時まだ知られていなかった。

第 28 巻 第 4 号 (53)
Fifth International Conference on Computers in Chemical Research and Education (VICCRE)

Solutions of the Schrödinger Equations for a Particle in Various Model Potentials
Irizu, T. (群馬大，A New Representation of Polycyclic Structures Based on MOST-3SR, Which May be Used for IUPAC-NAMES)
Moriguchi, I. (北里大，Pattern Classification for the Study of Structure-Activity Relationships)
Nakayama, K. (筑波大，未定)
Sasaki, S. (豊橋大，Computer-assisted Structure Elucidation—CHEMICS)
Shimozawa, J. T. (崎玉大，Use of Microcomputers in Chemical Education)
Tanaka, N. (東北大，Trace Characterization Information System (TRACIS))
Yamamoto, T. (東大，Automatic Chemical Name Fragmentation as an Access Path to Chemical Information)
Yamasaki, A. (電通大，Coblit-59 NMR Database Construction by PDB and COOD)
Yoneda, Y. (東大，CHEMOGRAM—A Computer Program Package for Chemical Logic)

敬遠 日本化学会化学教育誌 8 月号 増刊号

日程
10 月 14 日（火）登録、夕方ミッサ
10 月 15 日（水）会議
10 月 16 日（木）
10 月 17 日（金）会議、さよなら会
10 月 18 日（土）真珠センター訪問

登録 参加登録料 10,000 円、当日受付にて
宿泊 下記のホテルを確保しております。ご希望の方は事前にお申し込み下さい。
豊橋グランドホテル（シングル 5,000—7,000 円、ツイン 11,000—13,000 円、豊橋グリーンホテル（グランドホテルより 1—2 割安）
一般講演・ポスター まだ間に合います。どうぞお申し込み下さい。

主催 日本化学会化学教育誌 日本分析化学会
表記集会第 7 回 CODATA 国際会議（10 月 7 日—11 日、京都）のポストロジソナー-flyer 資料として開催します。

主な参加者と演題
Biemann, K. (米，未定)
Clerc, J. T. (スイス，未定)
Dubois, J. E. (仏，未定)
Heller, S. R. (米，The Development and Evolution of Chemical Information System)
Hippe, Z. (ポーランド，Self-Adaptive Computer System for Discovery of Organic Syntheses (SCANSYNTH))
Jochum, C. (米，UVFA, A Combined Linear and Nonlinear Factor Analysis Program Package for Chemical Data Evaluation)
Jones, R. N. (カナダ，未定)
Koptyug, V. A. (ソ連，未定)
Kryger, L. (デンマーク，Microcomputer in Electrochemical Trace Analysis—Some Viewpoints on the Suitability of Incorporating Microcomputers in Electroanalytical Devices)
Lykos, P. (米，Supercomputers and Chemistry)
Munk, M. E. (米，Computer-assisted Structure Elucidation—CASE)
Smith, D. H. (米，未定)
Wilkins, C. L. (米，A Graph Theoretic Study of Quantitative Structure Activity Relationships for Selected Enzyme-Substrate and Hormone-Receptor Interactions)
Zupan, J. (ユーゴスラビア，Interactive Oriented Chemical Information Systems and the Problem of Mixtures)
Fujita, T. (京大，The Ortho Effect in Structure-Activity Correlations)
Fujiiwara, Y. (筑波大，A Graph Data Base for Storage of Chemical Structures Organized by BCT)
Hijikata, K. (電通大，How Should the Computer be Prepared for Education)
Hosoya, H. (お茶大，Graphical Representation of the

化学教育