【特集】

界面の化学と機能
― 界面のマクロな特性 ―

北原文雄

気体、液体、固体などの物質は、単なる形態学的な面ではなく、物理化学的な特性をもった“界面”である。この面の特性が全体の特性を支配することもある。その例はコロイドである。

本文では界面特有の特性——界面張力、吸着、塩基、界面電気——を取りあげる。これらの特性は独立したものをではなく、互いに関連している。しかも、少量の物質——例えば、界面活性剤——の添加で大きく変化することがある。以下、それぞれの特性を解説し、それを変える因子を調べ、その機能にもふれたい。

はじめに

気体、液体、固体などの物質を考えるとき、その中のどの部分をとっても性質が同じとき、それを一つの相という。気体や液体は一つの気相、液相（低密度のヘリウムを除く）しかないと、固体も化学的にワックスとダイヤモンドなど多形を示し、二つの以上の固相をとることがある。これの相の境界部分は、密度、分子配列などの性質がどちらの相とも異なる。この境界部分を注目するとき、これを界面（Surface）という。界面の厚さは鈍接の相によるが、たとえば数分子層以内であれば、ついて2次元的に考え、厚さがいくらか問題にしないことが多い。

界面をつくる一方の相が気相または真空に近いか、これを特に表面（Surface）という。水の表面、機の表面、などである。

固体*1表面では最近清浄な表面が問題になっている。

鈍接する他の相の影響をうけないよう超真空で扱う。とくに半導体などで重要である。他方、界面では鈍接する二つの相の分子密度が大きいので、界面は両方の相の影響を強く受ける。例えば、水とベンゼン、水とオクタンールの二つの界面は一方が水でも非常に違う。

以下、界面の基本的性質を巨観的に調べるとともに、それが何に影響され、どんな働きをするかをみていきたい。

1 界面張力—界面の熱力学的量

表面にある表面張力は、じっと深い性質である。界面にもこれと同様な性質、界面張力がある。両者は以下、時には区別し、時には同義に扱うことがある。

1.1 純物質間の界面張力

界面をつくるのは混ざった二つの相である。しかも分離してしまわないで相接して界面をつくるためには、互いに引っぱり合っていなければならず。すなわち、二つの相の分子間には界面で引力が働いている。この引力は子分のエネルギーとして界面に蓄えられている。しかし、これには十分なエネルギーは蓄えられている。それゆえ、界面の特性を解説するにあたり、界面の物理的な性質を考慮に入れる必要がある。

*1 以下第 1 章について述べた感想を用いている。
かもこのエネルギーは熱力学的といい自由エネルギーである。界面張力とは、この界面にある余分の自由エネルギーを単位面積で示すものである。すなわち、

\[\text{界面張力} = \frac{\text{界面に働く力}}{\text{長さ}} \]

界面張力の分子間力という概念を定量化したアメリカのフォーカス（F. M. Fowkes）の考え方をここに紹介する。彼は界面張力と誘導する二つの相の表面張力とを結びつける。図1に示したように、混ぜ合わない二相A、Bが相接している。\(\gamma_{AB} \)はそれぞれの相の表面張力である。それは、それぞれの相の内部へ向かって働いている。したがって、表面張力は最小のように、単独では相は球面に近くなるとする。\(\gamma_{AB} \)だけでは二つの相は分かれていない。相接して界面つくるためには、B側はAの分子を、A側はBの分子を引っ張っているわけではない。これを図1で \(F_{AB} = F_{BA} \) と表した。もしこの二つの力が強すぎると互いに混ざり合うことになる。

\[F_{AB} = F_{BA} = \sqrt{\gamma_A + \gamma_B} \]

（2）

二つの相間で働く力は \(F_{AB} = F_{BA} = \sqrt{\gamma_A + \gamma_B} \) となる。と同じ界面張力 \(\gamma_{AB} \) は、図1より

\[\gamma_{AB} = \gamma_A + \gamma_B - 2\sqrt{\gamma_A \cdot \gamma_B} \]

（3）

となる。

フォーカスの考え方では、界面張力、表面張力についての一つの革命的な考え方であるとえよう。この考え方が一つの実証を示す。種々の脂肪族系炭化水素は非極性分子であるから、表面張力には分散力成分しかないとされる。しかし、\(\gamma_{AB} \)（添字は oil を示す）であること、種々の炭化水素液体の表面張力、水との界面張力（水銀液体の界面張力や油と無水銀界面）と同様に測定で

\[\gamma_{AB} = \gamma_{A} + \gamma_{B} - 2\sqrt{\gamma_{A} \cdot \gamma_{B}} \]

（4）

これをギブスの吸収式という。\(R \)は気体定数、\(T \)は絶対温度である。この式はどんな界面でも適用できるわけではないが、\(\gamma \)の測定できない固相が関係する場合は使えない。溶液の表面張力の濃度変化（\(d\gamma/dC \）と吸着量 \(\Gamma \) とを別々に測定して、この式は実証されている。

吸着により油（相）界面張力の低下する現象を界面活性性といい、吸着する物質を界面活性物質という。界面活性剤をもつ有機化合物はすべて界面活性物質である。このうち、少量で著しく界面張力低下させる物質を特に界面活性剤という。気相／液相間の表面張力低下に関するデータは数多くあるが、溶液／液相界面のデータは少ない。その一例を図2に示した。

\[\gamma_A = 20 \text{ dyn/cm} \]

（5）

\[\gamma_B = 10 \text{ dyn/cm} \]

（6）

\[\gamma_{AB} = 15 \text{ dyn/cm} \]

（7）

\[\Gamma = -\frac{C}{RT} \frac{d\gamma}{dC} \]

（8）

\[\gamma = 10 \text{ dyn/cm} \]

（9）

\[\gamma = 5 \text{ dyn/cm} \]

（10）

\[\gamma = 0 \text{ dyn/cm} \]

（11）

\[\gamma = 20 \text{ dyn/cm} \]

（12）

\[\gamma = 15 \text{ dyn/cm} \]

（13）

\[\gamma = 10 \text{ dyn/cm} \]

（14）

\[\gamma = 5 \text{ dyn/cm} \]

（15）

\[\gamma = 0 \text{ dyn/cm} \]

（16）

\[\gamma = 20 \text{ dyn/cm} \]

（17）

\[\gamma = 15 \text{ dyn/cm} \]

（18）

\[\gamma = 10 \text{ dyn/cm} \]

（19）

\[\gamma = 5 \text{ dyn/cm} \]

（20）

\[\gamma = 0 \text{ dyn/cm} \]

（21）

\[\gamma = 20 \text{ dyn/cm} \]

（22）

\[\gamma = 15 \text{ dyn/cm} \]

（23）

\[\gamma = 10 \text{ dyn/cm} \]

（24）

\[\gamma = 5 \text{ dyn/cm} \]

（25）

\[\gamma = 0 \text{ dyn/cm} \]

（26）

\[\gamma = 20 \text{ dyn/cm} \]

（27）

\[\gamma = 15 \text{ dyn/cm} \]

（28）

\[\gamma = 10 \text{ dyn/cm} \]

（29）

\[\gamma = 5 \text{ dyn/cm} \]

（30）

\[\gamma = 0 \text{ dyn/cm} \]
\[G_s = \tau A \]
（5）
この式から、\(\tau \) が小さくなれば、\(A \) が大きくなっても \(G_s \) はそれほど増加しないことになる。すなわち、界面張力が低下すると、表面積が増加するのである。このことは、表面活性剤が界面に吸着しやすいとされる性質と、さらに溶液内で数十分の子吸着体（ミセルといわれる）をつくるという重要な性質がある。ミセルについては密に、これでは省略する。

2 吸着---溶液／固相界面について

吸着は重要な界面現象で、各種の界面について見られる。気相／液相、液相／液相間の吸着については既に 1.2 で述べた。吸着は特異相、少量の物質が界面を生じ、吸着を最大限に変えることがあるという点にある。

固相表面への気相からの分子の吸着は、気体反応における触媒現象と関連して重要である。また、固体の清浄表面を問題にするときでも重要で、新しい装置や方法を使っての研究が進められている。ここでは、界面に着目し、固相／溶液界面の吸着について述べる。

2.1 溶液／固相界面吸着の特性

溶液は、溶解、溶液から、溶液が二種以上の場合もある。このような場合は、溶液間の競争吸着など興味ある現象も起き、实用上も重要であるが、本文では基本的な問題を扱うことにおい、溶液は一種類に限定する。

吸着は界面における物質の濃縮現象とみることもでき、固相表面には溶媒分子、溶質分子のいずれも吸着し得る。すなわち、吸着は固相、溶媒、溶質の三者間の三つともその相互作用が関係してくる。溶液からの吸着は気体分子の吸着とその点が違うのである。吸着等温線を数式化するときを念頭におく必要がある。

ふつう、溶液の吸着に着目して、その吸着量（\(V \)）を求める。吸着前の溶液濃度 \(C_0 \)，吸着平衡になった後の濃度 \(C \) を測定する。固相（吸着体という）の質量を \(m \) 、または表面積を \(S \) cm\(^2\)，溶液の量を \(V \) l とすると、

\[
V(mol/g) = \frac{(C_0-C)V}{m} \quad \text{または} \quad V(mol/cm^2) = \frac{(C_0-C)V}{S}
\]
（6）
となる。溶液濃度が低く、溶媒が多量にあるとき、また

\footnote{**3** エマルジョンやあわでは二つの相間の面積が増加していることは容易にわかるであろう。}

\footnote{**4** 吸着現象を説明するにあたって、実験的に吸着等温線をつくる。溶媒の吸着量（\(V \)）を横軸上にとり、吸着が平衡に達したとき、溶液中を残存する溶液濃度（\(C \)、平衡濃度という）を縦軸に表にしてグラフにしたものである。}

2.2 界面活性剤による吸着

吸着が界面活性剤と高分子の場合は特異的な吸着をする。界面活性剤の吸着は、界面を形成する溶媒に著しい影響を与え、したがって固体が散発性のときはその液中に分散性に影響するので、それ界面活性剤の説明の後で総合的にみることにする。高分子の吸着は、ふつうの低分子の吸着にはみられない特性があり、これも微粉末の分散性に大きく関わることがここでは省略する。

2.3 吸着等温式

吸着等温線を数式化したものを吸着等温式という。溶液／固相界面の吸着式（簡単にこういう）としては、

\[
\Gamma = kC^n \quad (k, n \text{ は定数})
\]
（7）

\[
\Gamma = \frac{abc}{1+abc} \quad \text{（Langmuir）の式}
\]
（8）

がある。式（7）は実験式で、\(k, n \) の物理的意味ははっきりしていないが、後者の吸着（活性塩、シリカゲル）による吸着によく適合する。式（8）は理論式で、単

第 33 巻 第 6 号 (1985) 459
分子層吸着を示し，b は飽和吸着量（I の平らになったときの値），a は吸着の強さを示している。

3 ぬれ

ぬれも基本的な界面現象の一つであり，接着，洗浄，浮遊選択などの重要な応用がある。

3.1 ぬれのタイプと評価

ぬれは界面化学的に“気相/固相界面が液相/固相界面におき変わる”と定義される。この定義により，四つのタイプのぬれが考えられる。これを図4に示した。それぞれ太線で示した部分（単位の長さまたは面積）に注目すれば，それぞれぬれが生じていることがわかるであろう。ぬれの前後の界面張力の差によって界面自由エネルギー変化（ΔG）が表される。表1に，それぞれのぬれの名称，ΔG，具体例を示した。

熱力学的にみて，$\Delta G<0$ ならぬれが生じる。しかし，国相を含む界面張力は測定できないので，このまではΔG の正負の判定ができない。ところが，(1)，(2)の場合について，図5に示す接触角を定義すると，図の

![図1](image1)

図4 ぬれの四つの場合（S，L，Gは国相，液相，気相を示す）。

<table>
<thead>
<tr>
<th>図4の番号</th>
<th>名稱</th>
<th>自由エネルギー変化</th>
<th>具体例</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>接触角</td>
<td>$\Delta G=\gamma_{SL}-\gamma_{LG}$</td>
<td>プラスチック片の水滴の付着</td>
</tr>
<tr>
<td>(2)</td>
<td>評価</td>
<td>$\Delta G=\gamma_{SL}-\gamma_{SG}$</td>
<td>水滴の上昇</td>
</tr>
<tr>
<td>(3)</td>
<td>評価</td>
<td>$\Delta G=\gamma_{SL}-\gamma_{SG}$</td>
<td>衣服を水につけるとき</td>
</tr>
<tr>
<td>(4)</td>
<td>評価</td>
<td>$\Delta G=\gamma_{SL}+\gamma_{SG}$</td>
<td>きれいなラッピ片上の水のひろがり</td>
</tr>
</tbody>
</table>

* 界面張力の指のSは国相，Lは液相，Gは気相を示す。

力の平衡関係から

$$\tau_{LG} \cos \theta = \gamma_{SG} - \gamma_{SL}$$

という関係がある。

この式(9)を使うと

$$\Delta G = -\tau_{LG}(1 + \cos \theta)$$

$$\Delta G = -\tau_{LG} \cos \theta$$

ΔG については式(11)と同じに表される。τ_{LG} は液相の表面張力であり，必ず測定でき，いつも正である。したがって$\theta<180^\circ$ ならば$\Delta G<0$ となり，接触角が起る。浸透ぬれ，浸透角は$\theta<90^\circ$ でなければならないことが式(11)よりわかる。すなわち，ガラス管中で水は$\theta<90^\circ$ なので管内壁が，水銀は$\theta>90^\circ$ なので管外壁が（浸透角を起さない）。このように，接触角によりぬれの評価ができる。$\theta>90^\circ$ のような，水にぬれにくい衣服は洗たくしようと思って水に浸けても水があふれ，水に浸れない。しかし，後述(5参照)するように，洗剤（界面活性剤）があれば，浸透，浸透が起こるのである。

国相が微粒子のときは接触角が直接測れない。粒子をプレスして平板をつって接触角を測ったり，粒子を細管につめて，その中の液体の上昇性の測定から接触角を求めたりする。

微粒子に対する別のぬれの評価法がある。微粒子を封入したアノルを液体中で割り，微粒子が液体でぬれるとき発生する熱を測る方法である。これを浸透熱とか浸透熱という。近年，微量の熱を測る技術が進歩し，浸透熱が精度よく測れるようになった。ただし，これは界面のエンタルピー変化（H_{BG}）を測るために，界面自由エネルギー変化を測るものではない。しかし，浸透熱の大小でぬれやすさを評価してもよい。

浸透熱のデータの一つを図6に示した。興味あることには，国相が非極性であると，液相の極性の有無に関係なく，浸透熱は一定である。このことは，フォークスが界面張力を考えたとき（1-2参照），非極性に基づく分散力成分のみが相互作用にあずかるとしたことと符合している。しかし，国相，液相の両者とも極性をもつときは，浸透熱は変化しており，ここにフォークスの考えの限界がある。
3.2 臨界表面張力

固体のうちで、表面張力が小さいと推定されるプラスチック類を低エネルギー表面というが、これらの表裏の違いを評価することが重要なテーマであった。アメリカのジスマン（Zisman）はつぎの考え方を提唱した。

まず、ある固相表面に対し種々の炭化水素液体の接触角θを測定し、cosθと液体の表面張力との関係をプロットする近似直線を示す。この直線の外挿がcosθ=1の直線と交わる表面張力の値を、この固相表面の臨界表面張力（τγ）と名づけた。τγの値のいくつかを表2に示した。

臨界表面張力は固体の表面張力ではないが、凝縮からみた一種の表面自由エネルギー値であり、物によっては表面張力の分散力成分、τγd（チョークスの式（3）と式（9）の組み合わせから求められる）に近い。τγの小さい固相面ほど凝縮が近いことを示している。表2のテフロンは最も凝縮に近い表面をもち、水に凝縮はないものろ。油（炭化水素）にも凝縮、これをはげしく（はっ水性油性）。

4 界面電気

二つの相の間には一般に電位差が生じる。この電位差の原因には、金属（半導体、絶縁体または液体でない）が境相面をしたとき生じる電子の移動に基づくものと、界面における何かの理由（後述する）による正イオンの分離によるものとに大別できる。前者は電気化学で扱う電極電位であるが、ここでは特にとりあげない。後者について述べる。

ある物質（電解水、半導体、絶縁体または液体でない）が液相と接したとき、物質、液相の組成（ここでは水溶液を考えることにする）によって、種々の理由で正イオンの分離が起こる。例えば、

1) 酸化物の場合、酸性のものはH⁺を水中に放出して界面に負の電荷をもち、塩基性のものはH⁺を水中からとり込んで正の電荷をもつ。同じ酸化物でも水溶液のpHを変えると、pHが低いうちはH⁺をとって界面に正の電荷をもち、高いときはH⁺を放出して負の電荷をもつ。

2) カーボンプラックは表面にCOOH基、フェノール性OH基をもっているので、水中ではこれらが電離して固体表面は負の電荷をもつ。

3) 難溶性の塩、例えばアソ化銀（AgI）は水中にあるAg⁺またはI⁻が微量で、このいずれかを表面にとり込んで正または負の電荷をもつ。

4) 油または非極性固体が水と接触すると、水の界面に生じているH⁺とOH⁻とのともに、H⁺の吸着性が相対的に小さいため、OH⁻が吸着して負の電荷をもつ。

さらに水溶液中に何か吸着性のイオンがあると、その吸着による電荷が重なる。後述する界面活性剤インタキの重要である。

以下、このように、固体や油は水溶液と接触すると界面に電荷をもつののがふつうである。他方、水溶液中には、電気の中性の原理により、反対符号のイオン（対イオン）が同量存在し、界面にある電荷とともに（界面）電気二重層をつくる。興味あることに、この電気二重層は蓄電器のように正負向い中央にそのものではない。それは対イオンが

<table>
<thead>
<tr>
<th>表2 プラスチックの臨界表面張力，τγ（dyn/cm）</th>
</tr>
</thead>
<tbody>
<tr>
<td>テフロン（ポリ塩化エチレン）</td>
</tr>
<tr>
<td>シリコン樹脂</td>
</tr>
<tr>
<td>ポリプロピレン</td>
</tr>
<tr>
<td>ポリエチレン</td>
</tr>
<tr>
<td>ポリスチレン</td>
</tr>
<tr>
<td>ポリ塩化ビニル</td>
</tr>
<tr>
<td>ナイロン</td>
</tr>
</tbody>
</table>

第33巻第6号（1985）（13）
液中で動いているものだからである。対イオンは界面電荷との静電気力と、自分のブラウン運動のため、地球表面の空気のようにだんだなく分布をする。これらの状況を図7に示し、それに応じる電位も示した。界面電荷による電位を界面電位（）サ、対イオンの分布によ、だんだら減少する電位を二重層電位という。

（）電位は直接求めにくいが、電気泳動、電気浸透、流動電位などの界面電動電位の測定により、（）は近似できるゼータ（）電位が求められる。二重層電位のひろがり（分布）も（）または（）と並んで重要な量であるが、これは水溶液中の電解質の解離で生じるイオンの量とイオン原子価によって数量的にきめる。または（）電位と二重層のひろがりは、固体や液体の微粒子の水中における分散、凝集を支配する重要な量である。

5 界面活性剤の吸着とふれ、界面電位

界面活性剤は溶液中でミセルを形成するという特性と、界面に吸着して界面の性質を変えるという特性があるので、後者についてふれておこう。

図8 界面活性剤水溶液

図9 正電荷をもつ個々界面上液性剤が吸着したときの電位の変化（a）電位は（）で正、（）でゼロ（）で負となる。