フナフチ環礁ラグーンにおける汚濁物質の移流分散特性

佐藤 大作1・横木 裕宗2・有田 正光3

1正会員 東京電機大学助教 理工学部理工学科建築・都市環境学系（〒350-0394 埼玉県北所沢市山崎町坂）
E-mail:sato@g.dendai.ac.jp

2正会員 茨城大学教授 工学部都市システム工学科（〒316-8511 茨城県日立市成沢町4-12-1）
E-mail:yokoki@mx.ibaraki.ac.jp

3正会員 東京電機大学教授 理工学部理工学科建築・都市環境学系（〒350-0394 埼玉県北所沢市山崎町坂）
E-mail:arita652@g.dendai.ac.jp

ツバル国フナフチ環礁フォンガフェ島沿岸からラグーン内に流出する汚濁物質の挙動を明らかとするために数値計算を実施した。各月ごとの挙動特性の把握を行った結果、環礁東部ラグーン沿岸から流出した汚濁物質は環礁西北部から南西部へ広がる傾向に見られることを示した。環礁北西部と環礁南西部では汚濁物質の増加特性が異なり、7、8月では月の後半に急激に上昇する特徴を有していた。滞留状況の検討を行うために実験値の計算結果より、フォンガフェ島のラグーン沖合で局所的に滞留が形成されること、および環礁南西部においても滞留することが明らかとなった。また、環礁南西部の滞留域はフォンガフェ島ラグーン沖合に滞留した汚濁物質が運ばれることによって形成されるものと考えられた。

Key Words : lagoonal pollution, numerical simulation, Funafuti Atoll, Tuvalu

1. 序論

ツバル国の首都であるフナフチ環礁（図-1）は南太平洋に位置し、ツバル国を形成する9つの環礁の中で最も都市化の進んだ環礁である。フナフチ環礁は一般の環礁と同様に、環礁のサンゴ礁の基盤上に有孔虫やサンゴ片が材料となる州島が形成されている。島は狭く、環礁のサンゴ礁の内側に形成されるラグーンの水深は最深部でも40m程度であり、水深1000m以上となる外洋と比較すると極端に浅い地形となっている。環礁東部には環礁内で最も面積の大きなフォンガフェ島があり、住民や政府施設等が密集している。

フナフチ環礁では、人口の集中する環礁東部のフォンガファイ島ラグーン沿岸から、屎を含む生活排水が未処理の状態で海域に流出していることが問題となっている。沿岸部より流出する汚濁はボトムレスとなっている各家庭の浄化槽から潮汐に伴う地下水動に応じて流出していることが明らかとなっている。しかしながら、ラグーン内に流出した後の汚濁物質の挙動に関する現状は乏しい。

佐藤らはフナフチ環礁ラグーンに対して流動場の数値計算および仮想粒子の流況解析を実施し、ラグーン表層では吹送流が支配的な流動要因となっている。汱流には環礁東部に移流される可能性が高いことが明らかとなっている。しかし、汚濁物質の解析において拡散が考慮されていないことや表層のみの移流に着目するにとどまっており、ラグーン内における汱流物質の挙動を把握する上には不十分である。本研究ではフナフチ環礁ラグーンにおける汱流物質の流況分布特性の解明を目的に、三次元流流分散方程式を用いて数値的検討を実施した。

2. フナフチ環礁沿岸部の污濁状況

フォンガフェ島ラグーン沿岸の汚濁状況に関して、藤田らが現地調査を実施している。藤田らが実施した沿岸部の海水および底質の調査結果によると、沿岸における海水サンプルから日本の環境基準の27倍の大腸菌が検出されており、沿岸部の汚濁が生じていることを明らかとしている。また、浄化槽内の汚濁水が潮汐動に伴って沿岸部から流出していることが汚濁の原因であることが指摘されている。沿岸から流出した汱流物質は、ラグーン内の流れや波によって流況分散し、指摘されると考えられ
られるが、ラグーン内の流動特性は未知の部分が多く、汚濁物質の挙動に対する定量的な理解には至っていない。今後のラグーン内環境の保全に対して、汚濁物質の滞留状況や汚濁が発生する可能性が高い海域の推定は重要な知見となるものと考えられる。

3. 汚濁物質の移流分散計算方法

(1) 計算モデル
汚濁物質の移流分散計算にはレイノルズ平均を行ったスカラー変数に関する3次元移流拡散方程式を用いた。鉛直方向の座標系には後述する流動諸元の計算条件と合わせるために座標系を採用した。乱流拡散項の計算には拡散係数の算定が必要となるが、水平方向の渦乱拡散係数はスマリオニスキーのモデルを採用し、鉛直方向の渦乱拡散係数はKowalik and Murtyより算定した。差分化においては時間発展項、拡散項および鉛直方向の流速を陰的に取り扱い、AD1法を用いて計算を行った。また、計算のタイムステップは60秒として算定した。

(2) ラグーン内の流動諸元
本研究では佐藤らによるBlumberg1により開発されたPOM(Princeton Ocean Model, Ver. 4.7.1)を使用して算定した時間毎の流動諸元を用いた。1年間の流動場の計算が2010年を対象に行われており、流速場を算定するInternal modeの計算間隔は6s、水位変動等を算定するExternal modeの計算間隔は0.6sで計算されている。また、水温29℃、塩分濃度35psuで一定とした1か月間の助走期間が設けられている。
水位境界条件には国立天文台より提供されている短周期潮汐モデル（NAO.99b）（Matsumotoら9）から得た6時間隔の水位変動が用いられ、開境界全域で一様の水位変動が設定されている。また、風場の境界条件にはオーストラリア気象局がアーカイブしている1時間毎の風速・風向の観測値について、過去5年のデータから月平均風速および風向を算出して使用している。なお、風速場は計算領域に一様に与えられたものである。
流速場の計算結果は、フォンガファレ島ラグーン沿岸で観測された流速値との比較が行われており、流速変動をよく再現していることが確認されている。これにより、汚濁物質の移流分散の計算結果についても同程度の妥当性が得られるものと考えられる。佐藤らによるラグーン内における流動場は主に風によって生じ、恒常的にに方向の流動が生じていることが確認されている。また、漁業風の強弱に代表される季節的な風速、風向の変動に応じて北西側か南東側に流れがシフトする特徴を有することが明らかとされている。

(3) 海底地形データ
海底地形データは衛星画像および2分メッシュの地球標高・水深データ（ETOPO2）より作成し、0.003度メッシュ（≒333m）のグリッドデータを作成した（図-2）。データの存在しない外洋部は境界部の水深を使用して拡張した。水平方向のメッシュ数は154×54とし、座標系での鉛直方向の分割数は等分割に5層とした。

(4) 汚濁物質の流出条件
汚濁物質はフォンガファレ島ラグーン沿岸より流出していることが明らかとされているが、流出源の詳細な分

L_1310
一方、汚濁物質の滞留状況を検討するための通年での計算においては、月末のラグーン内のスカラーチャートが次月の計算開始においても維持されるように処理した。

4. 各月の汚濁物質の移流分散特性

(1) ラグーン内の汚濁物質分布

フォンガファレ島沿岸から流出した汚濁物質分布を検討するため、各月毎の汚濁物質分布について検討した。

図-3は1～4月の月末における汚濁物質を想定したスカラー値分布の計算結果を示している。同図中で汚濁物質の濃度は赤色の濃淡で示し、州島部は緑色で示した。1, 2月は同様な傾向を示しており、ファナリ環礁ラグーン沿岸から流出した汚濁物質が1ヶ月間で環礁北部～北北西にわたりばっている様子が確認できる。また、同図中に示されている3, 4月の計算結果より、同時期はほぼ真西へと運ばれていることがわかる。

図-4は5～8月の汚濁物質分布を示している。同図中の5月の計算結果に着目すると、図-3に示した4月と同様に真東～運ばれているものの若干南寄りに変わっていることがわかる。6～7月は同様の傾向を示し、環礁南部から南部に向かって州島に沿うように運ばれるという特徴を有している。さらに、フォンガファレ島南端部付近の沖合にスカラーチャートの高い海域が存在し、局所的な滞留域が存在することが分かった。また、運ばれた汚濁物質は環礁南西部に広く分布するもののスカラーチャート値は低く、多くは外洋へと流出して希釈されたものと考えられる。

図-5は9～12月の汚濁物質分布を示している。同図より9, 10月の分布は図-4中の5月の分布と同様の傾向となっていることがわかる。しかし、環礁南西部の値が若干高くなっており、流動しやすい状況にあるものと考えられる。また、11, 12月では図-3中の3, 4月の分布と同様の傾向となっており、環礁の東部へと汚濁物質が運ばれている様子が確認された。

以上までの検討により、フォンガファレ島ラグーン沿岸より流出した汚濁物質は環礁北部から南西部まで広く分布することがわたった。さらに、フォンガファレ島南部
の沖合で局所的に滞留することがわかった。

(2) 小領域内の汚濁物質の変化

グラーネ内の汚濁物質分布をより詳細に把握するために、図-1に示すArea1～6の領域で各月の汚濁物質量の変化を求めた（図-6）。なお、着目する時刻によって計算領域内の汚濁物質の総量が変化するため、小領域内のスカラー値の総和を、着目する時刻の総スカラー値で除した汚濁物質量比で示した。

環礁北西部のArea1では1月に大きな値となり、10日前後および20～30%となることがわかる。7月、8月においても10%程度までは上昇するものの、大きな増加は確認されなかった。

環礁東部のArea2はArea1と同様に1月に値が増加していることがわかる。しかし、値としてはArea1よりも小さく、20%以下でいると計算された。その他の月ではほぼ0%となる結果であった。また、環礁西部のArea3は多くの月で値が増加していることがわかる。しかしながら値は小さく、20%以下の値となった。

汚濁物質の流出源が存在するArea4が最も値が高くなっている。2月は最も濃度が小さくなってしまい、フォンガファレ島沿岸部に流出した汚濁物質が他の場所へ拡散に達された事がわかる。しかし、他の月では値が高い状態となっており、フォンガファレ島沿岸部に近い海域で汚濁物質が発生しているものと考えられる。

環礁南西部に位置するArea5では7月に値が急激に増加していることが確認された。最も値が高くなる8月末には40%近くまで増加しており、汚濁物質が集中的に運ばれているものと考えられた。両月ともに共通して20日前後から急激に増加しており、流動特性が類似していることによるものと推定された。

環礁東部のArea6はすべての月で値が小さく、フォンガファレ島沿岸から流出した汚濁物質の影響をほとんど受けていないものと考えられた。

全体的に傾向として環礁西側の領域に運ばれる可能性が高いが、月によって北部もしくは南部に集中する傾向を示すことが確認された。また、フォンガファレ島沿岸での値はほぼすべての月で高く、汚濁物質が滞留する状況にあるものと考えられ、自然外力によるフラッシャイト等は期待できないものと考えられた。
5. 年間の汚濁物質の移流分散特性

（1）ラグーン内の汚濁物質分布

ラグーン内の汚濁物質の移流に関して検討するため、通年の計算を実施した結果を示した。図-7は1～4月の汚濁物質を想定したスカラーペイサンの分布を示している。同図より、1、2月の間に環礁北部へと運ばれ、滞留していた汚濁物質は3月末には無くなっており、外洋部へと流出することで値が低下したものと考えられる。

図-8は5～8月の汚濁物質の分布を示している。同図中の5月末の計算結果を見ると、7月末に観測された環礁西部の州島周辺に観測された汚濁物質の滞留は解消されていることがわかる。しかしながら、汚濁源である環礁東部のフォンガファレ島沖合に滞留帯が形成されていることが確認できる。6月末には環礁南西部～南部へと汚濁物質が運ばれている様子が確認でき、7月末には同海域に汚濁物質の残留が形成されていることがわかった。8月末では環礁南部で外洋側へと汚濁物質が流出しており、南部のラグーンで滞留していた汚濁物質が供給源となっているものと考えられた。環礁南部のラグーン海域は相対的に水深が浅く、また、閉鎖性が高い領域であることから、こうした汚濁物質の滞留が生じやすいものと予想された。

図-9は9月～12月における計算結果を示している。同図より、環礁南部で滞留していた汚濁物質が8月末より継続的に外洋側へと流出していることがわかる。さらに、汚濁物質は環礁南西部にも薄く広がっていることが確認されるとともに、フォンガファレ島ラグーン沖合の滞留帯は環礁北部に次いで大きなものが形成されることがわかった。

（2）小領域内における汚濁物質量の変化

図-10はArea1～6における年間の汚濁物質量比の変化
6. 結論

本研究ではツバル国フナフチ環礁フォンガファレ島ラグーン沿岸より流出した汚濁物質の挙動を把握するために数値計算を実施した。各月ごとの流分散特性の検討結果より、季節的に汚濁物質が運ばれる海域が異なり、環礁北西部と南西部の州島沿岸に多く運ばれる傾向が強いことが示された。また、ラグーン内を小領域に分割した検討結果より、環礁北部に位置する海域では、2月に汚濁物質量が高くなり、汚濁物質量比では40%弱となった。また、環礁南西部の海域では、8月に汚濁物質量比が40%近くまで上昇することが明らかとなった。汚濁物質の停滞状況を検討するために行った年間の計算結果からは、5月末よりフォンガファレ島のラグーン沖合に停滞域が形成することが確認されるとともに、7月末には環礁南西部の海域で汚濁物質の停滞が生じることが明らかとなった。

参考文献
1) 藤田昌史, 井上龍太郎, 佐藤大作, 桑原裕史, 横木裕栄：ツバル国フナフチ環礁のラグーン海岸における生活排水の流出機構、土木学会論文集 G（環境）、Vol.68，No.5，pp.121-125，2012。
2) 佐藤大作, 横木裕栄, 有田正光: ツバル国フナフチ環礁ラグーンの流動特性に関する数値計算、土木学会論文集 B2（海岸工学）、Vol.70，No.2，I_431-I_435，2014。
3) 和田明：海洋環境水理学，丸善株式会社，pp.80，2007。

(2015.3.18 受付)

CHARACTERISTICS OF POLLUTANT ADVECTION AND DISPERSION IN FUNAFUTI ATOLL, TUVALU

Daisaku SATO, Hiromune YOKOKI and Masamitsu ARITA

This study conducted the numerical simulation of pollutant advection and dispersion in Funafuti Atoll in order to identify the characteristic of lagoonal pollutant behavior. Simulated results of the monthly initialized condition of pollutant distribution indicated that the pollutant flowing out from the nearshore of Fongafale Island was transported to the west-side of the atoll. Characteristics of the transported pollutant increasing are different between north-western and south-western part of the atoll. In July and August the pollutant increased rapidly in the latter half of the month. The year-long simulation, which was conducted for considering the retention of pollutant, indicated that the retention areas were formed in the offshore of Fongafale Island. Additionally, the south-western part of the atoll was the retention area from the end of July. It was estimated that the pollutant source of retention area in the south-western part of the atoll was the another retention area which formed in the offshore of Fongafale Island.