質問 純水だけでは電解分解は困難ですが、Na₂SO₄を加えると水の電解が可能になります。純水は電気抵抗が大きく、電気が流れにくいからであり、Na₂SO₄を加えると、それらのイオンが電気を運ぶで抵抗が減ることを示します。この電気分解で電気を運ぶのは電気分解に直接関与するガス発生と電気分解反応に参加しないだけで、直流的に電気を運んでいて考えられます。だからそれらは電気を運ぶので抵抗を減すと言うのは間違っているのではないかでしょうか。また、SO₄²⁻が酸化を受けにくく説明で、OH⁻が電気分解反応（2OH⁻→H₂O+1/2O₂+2e⁻）で+1.2Vと書かれていますが、我々が通常見ている電極点には実際には関与していないように思います。理論的な電極点を書かれているのはどのような理論でしょうか、教えてください。
(豊中市・西川友成)

答 前回の解答 (本誌 35 巻 1 号 p.56) について、質問の点をもう少し詳しく説明いたします。
まず支持電解質の役割ですが、例えば Na₂SO₄を水に添加した場合、Na⁺イオン、SO₄²⁻イオンが生成して溶液の電気伝導度が大きく、かつ、電極間の電圧が高い可能性がある。しかしながら、電極間の電圧が減少します。しかし、実際の電極反応にはH⁺、あるいはOH⁻イオンが関与しないので、質問の答のように定的的には支持電解質は電気伝導度に寄与しないように思えます。この考えは電解液が完全に静止していても正しいかもしれませんが、実験においてはあり得ないことです。実際の電解槽液中でイオンを含む物質の移動は電極区間における挙動、対流、かくはんによって起こります。支持電解質を加えた場合のように、電極の電気伝導度が大きければ電極区間が小さく、泳動の効果は無視されることが多いです。電解分解反応が起こっている場合、電極の周辺には、かくはんのところまでは拡散により物質が拡散されていますから、この電極近傍で、電解反応が支配的であると考えられます。これにより、電解分解反応が起こり、電極の周辺は、電解反応が支配的であると考えられます。これにより、電解分解反応が起こり、電極の周辺は、電解反応が支配的であると考えられます。