1. 気体を分ける、液体を分ける

—分離膜材料—

講座 新 材 料

仲川 勝

気体を分ける、液体を分ける分離材料のうち、最近、関心が高くかつ工業化に向かっている高分子分離膜を取り上げた。これらは気体や液体の分子を透過させる性質が大きいかために、透過に選択性をもっている膜である。これと全く逆に、気体や液体の分子をほとんどの透過させないバリヤー性をもった膜も食品包装などに重要である。両極端と思われる透過性・バリヤー性を一つの理論—溶解—拡散説—を用いて説明し、膜透過の仕組みを述べる。分離膜を酸素化膜、水素分離膜、二酸化炭素分離膜などに分類し、それぞれの膜材料を示す。液体を分ける膜では水-エタノール分離膜を取り上げる。

1 は じ め に

本誌 33巻1号、p.17（昭和60年）に分離膜の概論を記した。今回は分離材料—特に気体や液体を分ける分離膜に焦点を合わせ、これらの性質の別の幅限的な性質である気体や液体の選択性（バリヤー性）の膜材料についても触れることにする。

2 膜分離、膜の選択性の仕組み

—溶解—拡散説—

膜が気体の混合物や液体混合物を分けるということは、これらの低分子が膜の中に入り、膜の中を移動し、膜の外に出る過程に差があり、分けた低分子がより多く膜を通過することである。また、バリヤー性は膜の中に低分子を入れていない場合、たとえ入っても膜の中を移動しにくくなる性質に依存している。

順序は逆になるが、膜の中に入ってきた低分子（以後気体で代表させる）の膜の中の移動はどのようにになっているのであろうか。1855年フィックは「物質の移動量は物質の濃度勾配に比例する」という経験的なフィックの第1法則を示した。膜の中の気体の濃度は膜の、気体の高い圧力と接している側で高く、低い圧力と接している

Separations of Gases and Liquids.
Tautomo NAKAGAWA 明治大学工学部 工学部化学科 教授

筆者紹介：昭和31年大阪府立大学工学部応用化学科卒業、同年工業技術院製品科学研究所入所、65年から現職。[専門]高分子合成、高分子膜。[おもな著作]「新しい機能膜」、共著；「膜の科学」、共著；「気体膜を中心に～」『化学・物理』、化学と教育

化学と教育
図 2 気体の膜通過の過程（溶解-拡散型）

膜表面に溶解した分子が膜中に拡散し、反対側から出てくる。

図 3 高分子鎖の熱振動と間隔の生成

高分子鎖中の気体分子は、膜を通過する際、膜の反対側（圧力の低い側）へ出てくることによって、膜の透過係数を決定する。この透過係数は、高分子鎖の構造と膜の温度によって影響を受け、特に高分子鎖の長さが透過係数に大きな影響を及ぼす。
側鎖としての大きな塩素がふさえており、間隔がせめてばれて気体の拡散は困難となる。このような膜は典型的なバリアー性を示す。表2にお示し、液体の分子の大きさを、分子の幅、長さ、水素の分子の1/3乗で評価した値で示す。このように、分子径は約6Åであるので、透過性を示すには高分子鎖間隔は10Å程度である。

3 気体を分ける膜、気体を遮断する膜

3.1 気体分離膜（気体分離膜）

気体分離膜は現在の分野で実用化されている（1）空気の酸素濃度が40％、あるいは30％に高め、前者は医療用に後者は燃焼用に用いる酸素/窒素分離膜（酸素富化膜）、（ii）アンモニア合成に用いられた塩素ガス中の水素の分離・濃縮に用いる水素/窒素分離膜、石油の脱硫に用いた水素の回収に使う水素/硫黄化水素（炭酸水素）分離膜など、いわゆる水素分離膜、（iii）石油の強制回収に用いた二酸化炭素の回収に使う二酸化炭素/炭酸水素分離膜など、いわゆる二酸化炭素分離膜である。合成高分子の中で表1に示す気体透過係数の大きさの高い分子が気体分子の対象となる。気体透過量の大きさは、透過係数に比例し膜の厚さに逆比例するから薄膜化が必要であり、現在0.1μm以下の薄膜が容易に得られる高分子が利用されている。膜分離の尺度として、混合気体中での気体の透過係数の比である理想的分離係数（単に分離係数）が用いられる。

3.1.1 酸素富化膜 表1から明らかのように、ポリメチルシロキサン膜が、工業的に製造されている高分子中では最も高い酸素透過係数を示すが、窒素との分離係数は約2と最も小さい。この分離係数では40%の酸素富化空気は得られず、30%酸素富化空気を得る酸素富化膜の設計の基本構造となっている。これは、この膜の構造が極めて広い高分子鎖間隔を有していることにによるものである。

研究段階では窒素に対する分離係数は1.6-1.8と低か、酸素透過係数は5-7×10^{-7}と最も大きいポリ [1-(トリメチルシリル)-1-プロピオン] が注目されている。また、膜を透過後のに酸素濃度を高くするには、溶解・拡散型に従うならば、分子の大きさが似ている酸素、窒素の拡散係数に差をつけるのは困難である。溶解度係数の差を大きくすることになる。図5に示すように、血液中のヘモグロビンが酸素と結合し、可逆的に酸素を解離することに学んで、これまでに知られている酸素と結合体を構成する物質、たとえばCo(3-MeOsaltmen)と呼ばれるロバール結合体を溶液に溶かし、これを多孔質高分子膜に合浸させた高分子支持液体膜も研究されている。これによって酸素の膜への取り込みが一段と大きくなる。このように透過の機構を促進輸送という。この膜を用いると酸素濃度82%の酸素富化空気を得られるが、溶媒の使用や膜の寿命の問題がある。

3.1.2 水素分離膜 水素は分子径が最も小さい気体であり、他の気体との分離の容易な気体である。しかしこのためには高分子鎖間隔が狭めで水素の拡散は容易だが、分子径の大きい他の気体の拡散は困難であるような膜が用いられる。透過係数と分離係数の比の大きいものが重要となる。1979年アメリカのモンサント社で、初めて商業化された水素分離膜は、アンモニア合成の塩素ガス中の水素を150気圧の混合ガスから分離回収する目的に用いられる。室温での水素の透過速度6.7×10^{-4}cm^{3} cm^2 s^{-1} cmHg，窒素との分離係数は約15.6である。

** ブロック共重合体は2種類の高分子A、Bがそれぞれ集合体を成し、しかも共重結合で結合している共重合体。
この膜は、微孔質膜で表面を有するポリアクリルアミド**中空系の孔をたすき、薄層を生かすため最も耐食性のあるポリメチルメチルカルバメート（シリコン樹脂）で塗布した構造を有する。このほか、石油脱硫に用いた水素の回収には、室温で水素の透過係数1〜2×10⁻⁹, 窓素とはの分離係数100の酸化セロロース膜も用いられている。同じ目的に、水素透過係数1.9×10⁻¹⁰と小さい、分離係数約340のポリアミドを主体成分とした膜が我が国で開発されその他の用いられている。ポリアミド膜は耐熱性で水素であり、150°C以上でも用いることができる。高温で使用できる水素分離膜には、改質ポリアクリル酸膜や、多孔質テフロン膜にポリ酸化ケレンを塗布、さらにこの膜上にビニルトリメチルシリルを重合させた膜がある。このように多くの膜を重ね合わせた複合膜や多孔質高分子膜を支持層に、この上に薄層を形成させた膜を用いるのが一般的である。

3.1.3 二酸化炭素分離膜 二酸化炭素は分子径が大きいため、膜の中の移動である拡散係数は小さいが、溶解度係数が大きいため、表1に示されるように、この二つの膜では透過係数は室素や酸素より大きく、膜によっては水素よりも大きい場合もある。しかしながら、拡散係数は膜でのそれは透過係数が大きいか、酸素富化膜を二酸化炭素富化膜としても利用することができる。逆に水素富化膜は二酸化炭素分離膜になり得ない。二酸化炭素膜を薄く、たとえばポリエチレンテレフタラート、ポリサルホランを三酸化セロロースに添加した膜や、二酸化炭素酸化いたための物質を膜に結合させた膜も研究されている。これらの膜では二酸化炭素の透過係数は10⁻⁸〜10⁻⁹オーダーで室素とはの分離係数は0.60に達する分離性能を有する。

3.1.4 その他 今まで述べた混合気体の分離のほか、オレフィン／パラフィンの混合気体の分離膜も研究されている。0.1〜0.2%の低濃度で存在するヘリウムを膜により分離濃縮する研究も行われたが、水素と分子径が沸点が類似しているヘリウムの分離には水素分離膜を用いることができる。二酸化炭素の分離膜に、二酸化炭素分離膜を用いる。

3.2 気体を遮断する膜
遮断性を有する膜を用いる重要な分野は食品包装である。食品の品質を保持するためには、空気中の酸素による酸化を防ぐ、吸湿性の物質を乾燥状態に保つ。含水率の高い物質から水分の損失を防ぐ。

（III）容器が失わないようにをおいを保持する。などが重要である。このため、高分子膜には、酸素、水蒸気においの物質の透過性の低さ、つまり遮断性が要求される。

酸素のバリアー膜は表1の酸素透過係数が参考になる。表1で酸素透過係数が最も小さいのはポリエチレンアルコールであり、ポリアクリロニトリル、ポリ塩化ビニリデンがこれに次ぐ。これらは塩化型のバリアー膜であり、透過係数が小さいのは拡散係数が小さいことによると、なぜ拡散係数が小さいかは既に前記で述べた。このほか、アクリロニトリル-塩化ビニリデン共重合体膜もすぐれたバリアー膜である。

3.2.1 エチレン−ポリアクリルアルコール共重合体（エバーカーロール）膜 ポリアクリルアルコールの拡散係数が小さい理由は、水酸基の水素結合により高分子鎖の熱振動が妨げられることによるものであることを述べた。この条件で膜が乾燥状態にある場合である。水酸基は親水性である。水素結合は吸水した水により破壊されるから、湿潤状態になるときこの膜の酸素透過係数は5〜6も増大し、酸素のバリアー性は消失する。膜を乾燥状態に保つためには水蒸気と親和性のない化学構造をポリアクリルアルコールに加えればよく、このためポリエチレンが考えられた。エチレン−ポリアクリルアルコール共重合体膜で、ポリアルコール55〜75%を含むした膜が“エバーカーロール**"とし食品包装に用いられている。この膜はエチレン−酸化ビニル共重合体を合成したのち、加水分解してエチレン−ポリアクリルアルコールとしたものである。酸素透過係数は10⁻¹２オーダーと低い。ポリアクリロニトリルの酸素透過性もいくらか水蒸気の影響をうける。これに対し、ポリ塩化ビニリデンは酸素、水蒸気の両方の透過係数が低い。ポリエチレンテレフタラートも透過性が低い素材であるが、さらにこの容器にポリアクリロニトリルが塗布され、バリアー性を改善する場合もある。

3.2.2 エバール積層膜 エバール膜をさらに乾燥状態に保ちバリアーも保持する他の方法には、水蒸気の透過性の低い膜でサンドイッチ状に仕立てて保護することである。ポリエチレンテレフタラート/エバール/ポリエチレン、あるいはナイロン/エバール/ポリプロピレンなどの三層に積層した膜が実用化されている。エバール膜は両側の水蒸気透過性の低い膜で、水蒸気の透過も低く保たれている。

4 液体を分ける膜

分離の対象となる液体混合物には、蒸留で分けること。

第36巻第3号（1988）（67）

275

** ポリ塩化ビニリデンの構造式は

** エバールは（株）クラレの商品名。（株）クラレから容易に入手できる。
が難しい沸点の近い液体、たとえばペンゼン／ジクロヘキサン、メチルエーテル／(ペンゼン＋メチルエーテル)などがあるが、省エネルギーを目的として、水／アルコールの分離が最も注目される。実用化もされている。

太陽エネルギーを植物を育て、これを資源にして、微生物の作用でアルコールなどを生産するのがバイオマスの利用である。しかし、エタノールをバイオマスから現在の方法で生産すると、エタノールの約1.5倍のエネルギーが必要である。このうち約70％は分離のための蒸留工程で消費されると推定されるが、省エネルギー的な膜分離に関心が高まったのである。水とエタノールとの分離の開発は単に数％のアルコールを、膜を通すだけでは濃縮するにとどまらぬ。最大の利点は共沸合混合物と呼ばれる、蒸留では分離されない多くの液体混合物が分離が可能であることである。エタノール水溶液も共沸混合物の一例である。

液体を分離する膜分離方法はバイオバレーション法と呼ばれ、これにはpermeation（透過）とevaporation（蒸気、蒸発）の合成語で pervaporation である。したがって透過と蒸発とも呼ばれる。この膜分離法は混合気体の分離に混合液体を用いてよいのが、図6に示すように、透過側を減圧に保ち、膜内を蒸発させて蒸気を緩衝にすることで、分離が容易にし、その蒸気冷卻、液化化して取り出す方法である。膜分離の機構は前節の溶解-拡散説によると考えられている。バイオバレーション法では、膜にとり込まれた液体の濃度勾配を表7のとぐとく、気体の場合に示した図1の場合と若干異なる。液体と接している側は膨張状態になり、膜中の濃度が高ければ、透過側は乾燥状態にあり濃度は低い。膜と親和性の高い溶媒ほど膜中に入りやすいので、溶解度係数が透過性を第一に支配するが、乾燥状態に近い層では拡散係数も重要な因子となる。図6に示すように膜内の濃度勾配が一本の線で表せない場合が多いから、透過係数より透過速度が用いられている。また分離係数として、透過液中の濃度比を供給液中の濃度比で除した数値が与えられる。表3には研究されている水／エタノール分離膜を示した。アルコールの脱水に工業化されている膜は改質ポリビニルアルコール膜で、水が選択的に透過する。

5 将来展望

石炭、石油、天然ガスなどいわゆる化石燃料は徐々に枯渇に向かっている。これらのエネルギーを有効に使う必要があるが、酸素濃度が低い空気を使用すれば燃焼効率が高くなることが指摘されている。現在開発されている酸素富化ガス透過性が10倍高くなることが望まれている。水素もエネルギーとして重要であるほか、各種の化学工場で使用されており、その有効な分離回収も課題である。二酸化炭素分離膜やバイオガスからメタンを分離するのに重要であり、有機廃棄物をメタン発酵などで分解し、生活廃水の浄化を行うと共にエネルギーとして利用する研究プロジェクトも進んでいる。

再生可能なバイオマス資源からの発酵法によるエタノールの生産そのが必要エネルギー的分離も今後ますます工業化に進むと思われ、高効率分離膜の開発が期待されている。

参考図書
1) 仲川 勲、“膜のはたらき－気体透過膜を中心に－”，化学 one point 11, 共立出版 (1987)。
2) 仲川 勲、“分離膜－基礎から応用まで”，産業図書 (1988)。

276