ノート

イメージ入力による
CAIの物理化学演習への応用

山岡由美子
（昭和63年6月9日受理）

表1 システム構成

<table>
<thead>
<tr>
<th>コース</th>
<th>項目</th>
<th>タイトル</th>
<th>フレーム数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>教材作成機</td>
<td>IBM 5560 (40 MB HD付)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>alpSC 900 イメージスキャナー</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>alpPR 900 イメージプリンター</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>教材配布機</td>
<td>IBM 5560 (40 MB HD付)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>alpCD 800 光ディスク装置</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>生徒機</td>
<td>IBM 5540 (16台)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>支援ソフト</td>
<td>alp 社製教育システム</td>
<td></td>
</tr>
</tbody>
</table>

表2 コースウェア一覧表

<table>
<thead>
<tr>
<th>コース</th>
<th>チャプター</th>
<th>タイトル</th>
<th>フレーム数</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>001</td>
<td>原子と分子</td>
<td>33</td>
</tr>
<tr>
<td>20</td>
<td>002</td>
<td>熱力学の基礎 その1</td>
<td>40</td>
</tr>
<tr>
<td>20</td>
<td>003</td>
<td>熱力学の基礎 その2</td>
<td>32</td>
</tr>
<tr>
<td>20</td>
<td>004</td>
<td>反応速度論 その1</td>
<td>44</td>
</tr>
<tr>
<td>20</td>
<td>005</td>
<td>反応速度論 その2</td>
<td>55</td>
</tr>
</tbody>
</table>

表3 62年度2年次生に対するアンケート結果

<table>
<thead>
<tr>
<th>CAIを利用したか</th>
<th>利用した</th>
<th>利用したい</th>
<th>回答なし</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>87名 (39%)</td>
<td>90名 (40%)</td>
<td>47名 (21%)</td>
</tr>
<tr>
<td>何時間利用したか</td>
<td>うち役だったと思う者</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2時間以内</td>
<td>30名</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2～5時間</td>
<td>37名</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5～10時間</td>
<td>15名</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10時間以上</td>
<td>5名</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ご使用したCAIシステムは表1のとおりである。

2 コースウェアの内容と利用状況

コースウェアを作成したのは2年次生の物理化学Ⅰのためのコースで、その内容は表2のとおりである。その多くは計算問題を中心に、解答を導く過程が正しく捉えられているかどうかをできるだけ把握し指導できるよう

Application of a CAI System by Image Processing to Practice in Physical Chemistry.

Yumiko YAMAOKA

神戸学院大学助教授（理学部）理学博士

673 兵庫県神戸市西区伊川谷町有頼（勤務先）
初めての試みであるので特に修査を強制しなかったが、今後、カリキュラムの中で、例えば試験をやってみて理解できていないと考えられた生徒にはコースウェアでの学習を義務づけるなどの工夫を行えば、更に効果を上げることは可能であろうと考えている。

3 イメージ入力の利点

著者の使用しているシステムはすべての教材をイメージ入力するという特徴を持っている。これは教材作成が簡単で非常に速いということに直結している。教材の原稿は一画面ごとにB6版程度の大きさで普通紙に書いてある。手書きが主体で、必要があればテキストのコピーを切り張ることもある。したがってコンピューターが手元にないときでも原稿を作成できるという利点もあることがわかった。また、ワープロ入力で問題となる数式の記述やグラフも別にする必要がないので楽である。

画面の原稿ができたところで、イメージスキャナーから入力し、チャートリアルコースとするための流れを決めるデータを書く。

何も教材とするかを考える時間は別として、実際に原稿を書くのに要した時間は、一つのチャプタ当たり平均3時間程度であり、コンピューターへの入力は1チャプタ2時間以内であった。これは他のオーサリングシステムを利用して教材を作成する場合の十分の一以下であると考えられる。普通の授業の中でCAIを利用していく場合、教材作成の手間が最大の問題であるが、この程度の短時間で教材作成がなければCAIも気軽に利用できるであろう。

簡単な教材を作成したいという意図で使い始めたイメージ入力であったが、利用してみて気付いたのは、イメージ入力の画面を教材に用いると生徒が興味を持って学習に取り組んでくれるという予想外の効果であった。例えば図2のように画面を使うことができる。

手書きの原稿が学生に親近感を与え、また、所々にイラストや写真を入れることにより気分転換をはかって教えきらせない。学生の反応の中に「楽しい」「この画面はおもしろい」というものがあった。現代の学生にあった学習法であるかもしれないと思っている。

文 献

1) 例えば、神田耕一、三原宏記、山本美雄、化学と教育、35、162(1987)；下沢隆、化学と教育、36、32(1988)。