ドラッグデリバリーシステムとは

このドラッグデリバリーシステムとは、薬物が生体にとって異物である。したがって、薬物が体内に入ると、生体はこれを解毒化して体外へ排出しようと努力する。これが代謝であり、排泄である。特に薬物を処理し、排泄する能力を持つ肝臓、腎臓はこのときフル回転しなければならない。それでも治療のために薬物が生体に投与され続けると、生体の薬物処理能力を上回る結果、副作用や毒性の発現に至ってしまう。そのようなことのないように薬物をその作用部位に選択的に効率よく到達させること、すなわち薬物の生体内動態をコントロールする工夫が必要である。それがドラッグデリバリーシステム（Drug Delivery System、DDS）である。

DDSの概念は次の三つに分類される。すなわち①作用部位での最適薬物濃度を得るために、投与速度を制御しようとするコントロールドリリース（放出制御）、②粘膜や皮膚などの透過障壁に何らの変化を与えて薬物吸収を改善させようとする試み（吸収改善）、③薬物が生体内に入った後、その分布速度を制御して標的となる部位へ薬物を送り込むとするターゲティング（標的指向化）である。そこで本稿では、現在実用化あるいはその直前にある①と②の例を取り上げて、いかなる工夫が必要であるかを紹介することにする。

コントロールドリリース

薬物の効果を持続的に発揮するには有効かつ安全な血中濃度のある期間維持する必要がある。その目的に当たり従来のドリリース製剤には経口投与剤、経口以外の経粘膜投与剤、皮膚投与剤がある。経口投与剤としてはジオフィリンや硝酸イソソルビドなどの薬物を含む粒剤や錠剤を不溶性高分子皮膜で覆った例がある。この場合，
消化管液が膜を通して中に入ってきても初め、内部の薬物が溶媒に外部へ放出される。経皮投与剤の代表例には、緑内症治療薬ビロカルピンを放出制御高分子で覆ったコンクラクテエンズ様システムから角膜を通して送るシステムがある（図1）。これだと薬回投与（1日4回）に比較して、1回結膜囊内に挿入すると1週間にわたり放出可能であり、その上点眼滴後の副作用も少ない。

経皮投与剤の代表例は狭心症治療薬ニトログリセリンの貼布剤がある（図2）。主薬を乳糖に含ませ、粘性シリコン中に分散させたものを貼り敷きとし、それとエチルオレイン酸ビン酸ビニル共重合体の放出制御膜と主薬の初期量を含むシリコン粘着膜から成るシステムである。胸部皮膚に貼付後24時間にわたり、一定の速度でニトログリセリンが放出される。

図1緑内症治療用システム。

図2狭心症治療用経皮吸収治療システム。

ターゲティング

ターゲティングの方法の例を紹介する。

①プロドラッグ：標的部位において酵素反応、化学反応により選択性に活性化されるように化学構造を修飾したのがプロドラッグである。例としてはドキシフルピリジンが膿瘍組織内で酵素分解されて5-フルオロウラシルに活性化される場合、アシ