微生物酵素を利用した食品の生産
—発酵からバイオグリーンテクノロジーへの展開

KIRIMURA Kohtaro
桐村 光太郎
早稲田大学理工学部応用化学科 助教授

食品製造や酵素利用技術に関するグリーンケミストリーとは微生物と酵素を利用したバイオテクノロジーで、基本は発酵現象である。酵素を利用した立体選択的な1段階反応で新規メントール配糖体（menthyl-α-D-glucopyranoside）の選択的生産が可能になったが、これは常温常圧で進行するため危険性がない反応である。この事例のように無理と無駄がなく、本質的に環境負荷が少ないことがバイオテクノロジーによる物質生産の特長である。環境負荷低減のためのバイオテクノロジーはバイオグリーンテクノロジーと呼ばれ始めた。

1 はじめに

食品製造や酵素利用技術に関するグリーンケミストリーとは、微生物と酵素の高度利用すなわちバイオテクノロジーの応用にほかならない。酵素や微生物を触媒として利用する物質生産は化学そのものであり、有用物質を常温常圧で生産するための触媒（酵素）を自然の中から探し出しの特長を活用することにより環境への負荷低減も可能になる。醸造や発酵工業から発ったバイオテクノロジーは、独自の新たな物質生産技術を確立するための基幹技術であり、無理と無駄のない新しい社会を実現するための大きな力を秘めている。

持続可能な社会の実現に貢献するバイオテクノロジーは、日本でもバイオグリーンテクノロジーあるいはグリーンバイオケミストリーと呼ばれ始めた。ここでは、バイオ産業の根幹には微生物や酵素に関する研究と伝統的技術があることを確認した上で、広い意味での食品生産における微生物と酵素の利用について考えてみたい。これらを通じて、なぜ有用物質生産のためのバイオテクノロジーがグリーンケミストリーとして重要であるかを明らかにする。

2 微生物や酵素を利用した生産物

酵素はタンパク質を本体とする生体触媒で、細胞内で栄養分をエネルギーと細胞物質に変化させる役割を担っている。すなわち、酵素は生命活動の原動力である。自然界における反応の主体は微生物であるが、物質生産に利用される微生物は生物反応（発酵現象）をすべて酵素で触媒されている。

表1に微生物や酵素を利用して生産される有用物質を示す。これはバイオテクノロジーの進展に伴う生産物の変遷を示したもので、醸造製品（第1世代）、発酵工業製品（第2世代-1）、遺伝子組換えを使用した発酵工業製品（第2世代-2）、大量生産型汎用化学製品（第3世代）に分類できる。第4世代は登場していないが、水素やエチレンなどエネルギー関連化合物を予想される。

表1で明らかのように、バイオテクノロジーは発酵現象の人为的利用に端を発しており、醸造・発酵食品はバイオ製品の原初的な姿をとどめている。高温高圧が使用できない時代にそれだからこそ常温常圧で使用できる微生物や酵素を自然界か
ヘッドライン

らい取り入れ、反応条件を整えることで目的とする反応（発酵）だけを行う技術を確立した人類の知恵は素晴らしいに満ちている。資源省エネルギーやさらに資源循環型社会への移行が必要な現在であれば、無理と無駄のない生産技術の基本型として発酵現象から謙虚に学ぶべきことは多い。

日本のバイオテクノロジーの特長について強調しておきたいことは、発酵と酵素の研究に強くこれから産業に反映されているという事実である。1960年代にアミノ酸や核酸の発酵生産法、1970年代に固定化生体触媒（後述）の工業的利用法、1980年代に酵素によるアクリルアミド（第3世代製品）の生産法、を世界に先駆けて確立したのが日本であり、大規模に伝統が継承されている。微生物や酵素を利用した有用物質の生産と歴史的な展開については生産17を参照していただきたい。

3 酵素を利用したメントール配糖体の生産

筆者らの研究に食品素材であるメントール配糖体の生産について紹介し、酵素や微生物（生体触媒）の特長を応用した反応がどれほど素晴らしい可能性を秘めているかを考えてみたい。

ハッカルの香り成分であるメントールは清涼剤として広く使用されているが、水に難溶性で揮発性を示すことが使用上の制約であった。そこで、筆者らは酵素を利用した新規なメントール配糖体（menthyl-α-D-glucopyranoside、以下α-MenGと略）を開発した34。α-MenGは保存状態では不揮発性で、口に含むとほのかな甘味を示し数十分後にメントールの香気を発するため、菓子類や医薬品への使用に適している。ここで重要なことは、β-体でグルコースが結合したβ-MenGは苦味を示すため、アノマー選択的反応によりα-MenGのみを生産する方法が必要なことである。通常の有機合成では、α-とβ-MenGの混合物は得られるがα-MenGのみを作り分けることができない。

筆者らは、1段階でα-MenGを選択的に生産するために必要な微生物酵素を探索し、自然界から真菌WU-9701を発見した。反応条件を最適化し、図1に示すように、メントールとマルトースをWU-9701の乾燥菌体（酵素の袋と考えれば良い）とともに40℃で振とうするだけで、メントールの全量をα-MenGに変換する合成反応を実現した。さらに、飽和濃度を越えてα-MenGを生成させ結晶として収穫させることにも成功した。抽出などの複雑な操作が不要、溶液に浸透するだけでα-MenGを分離することができる。現在、α-

表1 微生物や酵素を利用した生産物の分類。

<table>
<thead>
<tr>
<th>世代</th>
<th>製品としての特徴と例</th>
</tr>
</thead>
<tbody>
<tr>
<td>第1世代</td>
<td>発酵によって得られたものを全体、いわゆる醸造・発酵製品</td>
</tr>
<tr>
<td></td>
<td>例：酒、食醸、酸油、味噌、発酵乳製品(チーズ、ヨーグルト、発酵乳ほか)、漬物、ほか多数</td>
</tr>
<tr>
<td>第2世代1</td>
<td>発酵によって生産した特定の細胞</td>
</tr>
<tr>
<td></td>
<td>成分、工業的発酵製品</td>
</tr>
<tr>
<td></td>
<td>例：有機酸(クエン酸、乳酸ほか)、アミノ酸、核酸、ビタミン類、抗生物質、ステロイド、酵素(アミラーゼ、プロテアーゼ、セルラーゼ、リバーゼほか)、ほか多数</td>
</tr>
<tr>
<td>第2世代2</td>
<td>遺伝子組換え技術を利用して本来</td>
</tr>
<tr>
<td></td>
<td>は細胞内に微量しか存在しない成</td>
</tr>
<tr>
<td></td>
<td>分を大量生産して製造した製品(組</td>
</tr>
<tr>
<td></td>
<td>換スタンパク・ペプチド)</td>
</tr>
<tr>
<td></td>
<td>例：ペプチドホルモン(インスリン、ソマスタチンほか)、リンホカイン(インターフェロン、インターヨーキンほか)、エリトロポエチン、ウロキナーゼ、ほか多数</td>
</tr>
<tr>
<td>第3世代</td>
<td>パイオテクノロジーを利用して生成</td>
</tr>
<tr>
<td></td>
<td>したプロセスで大量生産した凹面化学製品(コモディティエキマルク)</td>
</tr>
<tr>
<td></td>
<td>例：アクリルアミド、インジゴ</td>
</tr>
</tbody>
</table>

図1 微生物（酵素）を利用したメントール配糖体（α-MenG）のアノマー選択的合成。マルトースとメントールの反応によりグルコースが立体選択的に転移し、α-体でメントールと結合したα-MenGのみが生成。
表2 酵素反応と化学反応の特徴。

<table>
<thead>
<tr>
<th>反応条件</th>
<th>反応に要するエネルギー</th>
<th>溶媒</th>
<th>特異性</th>
<th>酵素反応</th>
<th>化学反応</th>
</tr>
</thead>
<tbody>
<tr>
<td>反応条件</td>
<td>常温, 常圧</td>
<td>酵素の立体構造の化学</td>
<td>水 (有機溶媒も可)</td>
<td>高い</td>
<td>低い</td>
</tr>
<tr>
<td>反応に要するエネルギー</td>
<td>酵素の立体構造の変化</td>
<td>水または有機溶媒</td>
<td>高い</td>
<td>低い</td>
<td></td>
</tr>
<tr>
<td>溶媒</td>
<td>熱または光</td>
<td>有機溶媒</td>
<td>高い</td>
<td>低い</td>
<td></td>
</tr>
</tbody>
</table>

-MenG の工業的生産に向けての取り組みも始まっている。

4 バイオグリーンテクノロジーへの展開

図1の酵素反応の特長を別の観点から考えると、モノマーを化学反応で形成することを可能とする。この技術は、バイオグリーンテクノロジーの発展点で、自然に学ぶ発想からびやかに展開した技術が、今後の環境要求の姿を形作る、無理と無駄のない社会の実現に大きな力を発揮する。大切なことに、自然界には無数の微生物が存在する。これららの様々な可能性を引き出すことでバイオグリーンテクノロジーのさらなる発展が期待できるのである。

参考文献

4) 筆者からのフィードバック(編者)

5 おわりに

筆者らのα-MenG の酵素的合成に関する実例からも明らかのように、微生物や酵素を利用した物質生産は本質的に環境負荷が少なく、高温高圧が必要で副反応を避けられない従来の石油化学工業の姿と対極にある。自然の力の一部を効率的に活用することがバイオグリーンテクノロジーの発展点で、自然に学ぶ発想からびやかに展開した技術は、今後の環境要求の姿を形作る、無理と無駄のない社会の実現に大きな力を発揮する。大切なことに、自然界には無数の微生物が存在する。これららの様々な可能性を引き出すことでバイオグリーンテクノロジーのさらなる発展が期待できるのである。