自由電子レーザー

自由電子レーザーは光速に限りなく近い速度で走る電子ビームを射出するのに、通常のレーザーにはない高輝度と広帯域性を生む。これにより、光の強度を大幅に向上させることができ、化学、生物、物理、医療などさまざまな分野で利用されている。

自由電子レーザーの発生原理

自由電子レーザーは元々、高エネルギーの自由電子を用いて光を発生させる技術として開発された。自由電子レーザーは電子のエネルギーを光エネルギーに変換するため、エネルギーの変換効率が高い。

最近の自由電子レーザーは、電子を高エネルギーに加速し、これにより発生する光を用いて様々な用途に用いることができる。自由電子レーザーは、材料の分析、化学反応の研究、医療の分野で活用されている。

doi:10.1136/jmed-2001-000222

自由電子レーザーの原理。
レーダー

この前項の救急車のサイレンが近づいてくる時に、
サイレンの音の高さが高くなることを思い出して頂きたい。
自由電子レーザーの波長は電子の軌道運動の大きさが
大きいほど波長が長くなり、一方電子の速度がより高速
になると、より短くなる性質がある。このことはアンジュレ
ータの磁場の強さや電子の速度を変化させることで、光の
波長を自由に選択することができる意味を示す。

このように発生した光は自発光と呼ばれ、まだレーザー
光とは言えない。つまり、レーザー光にするためには、自
発光を種として、増幅する効果を与え示す必要がある。
このためには数多くの要素が必要である。光共鳴器が必要になる。
自発光は光共鳴器に含まれるもののは数々の往復で消滅する。しかしその自発光は、往復ごとに後続の
電子から、光のエネルギーをもらい重ね合わせられるた
め、強度は往復毎に増幅されると、ちょうどを元リカ
トで行うと、一年ごとに増えていくように似た現
状である。光の現状状況ではあるそうだが、例えば光
長が20%として1万円を元リコトで20年増えると30万円
になる。実体自由電子レーザーの光の銀行にたとえるこ
とができる。自発光の強度が元リコト、自発光帯の一つの増
幅率を利息すると、20%の増幅率で130回往復して増幅
が行われたとすると、レーザー光は自発光の強度の100
倍にもなる。130回往復する時間は、一般的な光
共鳴器の長さを3mとすると2.6μs程度の時間で增
幅され発振する。

自由電子レーザーは光共鳴器の出力資の中心に開かれた
1mm程度の小さな穴から取り出される。その値は共
鳴器内に築積している光の約1%程度に過ぎない値である
が、大強度の光が築積しているので、1%の出力光とはいえ
え、ピーク出力は1～10万kWに達する。この値は電子
の群集の時間と同様に、数psの間の瞬間的な値であるが、
平均的な原子発電所の出力が100万kWとすると、こ
れに匹敵する極めて大きな値である。

自由電子レーザーの応用

現在自由電子レーザーの応用研究が盛んに進められている
のは、主に中赤外（2.5～25μm）から遠赤外（25μm
以上）にかけての波長域である。この波長域は他の可変波
長レーザーの発振が難しい領域であり、自由電子レーザー
でなければ発振できない波長域である。さまざまな分子の
振動スペクトルは3～30μm、回転スペクトルは30μm以
上にあることが知られている。特定分子の結合の振動スペク
トルや回転スペクトルに合った波長の自由電子レーザーを
照射すると、振動振幅が増大し、十分光が強い場合は、特
定分子の結合を切り離すことができ、光を用いたさまざ
まな化学変化を引き起こすことができるようになる。この
ように自由電子レーザーは新たな光科学の道具の一つとし
て有用性が期待されている。

参考文献
1) 世界の自由電子レーザー研究施設紹介,
3) 自由電子レーザーとその応用, コロナ社 (1990).

河合正之 KAWAI Masayuki
(川崎重工業(株)関東技術研究所高エネルギー技術研究
部・グループ長)

【連絡先】228-8383 千葉県野田市二所 118 番地 (務務先)。

「化学実験虎の巻」欄原稿・アイデア募集

本欄では原稿ならびにアイデアを募集いたしますので、ふる
まってご応募下さい。また、本欄に関するご要望、ご意見をお寄せ
いただければ幸いです。

「化学実験虎の巻」

ご応募に当たっては、本誌所定の「化学実験虎の巻」欄執筆
データ案を作成し、資料を添付してお送り下さい。企画委員
会でご執筆事項のお願い等を追加したうえで、改めてご連絡申
し上げます。

「化学実験虎の巻－便利な実験器具・道具」

市場されているいろいろな器具は、使う人に便利な面白
い使い方があり、またちょっとした工夫で全く別の用途に転用
されたりすると思います。ベンツパーナーとリーピッヒの
冷却管とまさにいかんでも、先生方のお手の道具の器物もあ
ると思います。それらを、1ページ分でも、2、3行でもお知ら
せ下さい。

楽しい化学教育ができるように、多くの方々がアイデアをお
寄せ下さることを期待しています。

連絡先 101-8307 東京都千代田区神田駿河台1-5
 社団法人 日本化学学会 化学と教育編集委員会
 (☎) 03-3292-6164

化学と教育 49巻4号 (2001年)