分子の「型」をとる

1 分子認識と分離材料

分子認識とは、分子間相互作用（非共有結合）を用いて、ある目的分子だけを選択的に結合する過程のことである。目的分子に対してのみ認識機能をもつように人工的に設計・合成された化合物を人工レセプターといい、分離材料や、分子センサーとして重要物質の検出に応用することが可能となる。

現在、分離材料として一般に用いられているのはシリカやイオン交換樹脂、多孔質ポリブチレン樹脂など、化合物の疎水性や極性を利用した方法であり、特定の目的分子に対する選択性は低い。従って、これら従来の手法では目的とする物質のみを選択的に効率良く捕捉することは難しい、特に構造上のわずかな差を認識し、分離することは非常に苦手である。一方、今後は複雑な構造をもつ医薬品や光学異性体、さらにはタンパク質といった付加価値の高い生体関連物質を高純度で生産する技術が重要となる。そのため構造上的わずかな差異を認識し、高選択性をもつ分離材料が求められるように思える。すなわち、特定の分子を正確に分けるための分子レベルでの精密な「型」が求められるのである。

2 抗体の特徴、及び機能材料としての問題点

非常に高い分子認識力と選択性をもつ天然の分子として、抗体や受容体があげられる。これらは水素結合や疎水相互作用、イオン結合といった様々な相互作用を巧みに使うことで「鍵と鍵穴」に例えられる高い分子認識機能を発揮している。実際に抗体を分離材料に用いる例もあるが、生物分子であるために高価で安定性が低く、温度や溶液の酸性度等の使用条件に制限があること、通常の化学物質（小分子）とは使えないことが問題である。それに対し、安定性に優れ、使用条件に比較的制限のない分離機能材料の開発は非常に大きな挑戦であり、様々なアプローチが試みられている。

3 モレキュラーインプリント法

分子は疎水的な部分、親水的な部分、イオン化した部位などに分けられる。疎水的な部分は疎水性の化合物と相互作用しやすく、+電荷を帯びた部分は−電荷を帯びた部分と、+電荷は−電荷と相互作用しやすい。このことを利用し、目的の化合物を機能性モノマーと会合させた後、この状態を固定化することで、基質選択性をもつ人工レセプターが合成できる（図1参照）。近年、スウェーデンのラトム大学教授のK. モレスバックらはこの方法論に基づき、新規な高分子レセプター合成法を開発し、基質選択性の認識部位の調製に成功した。この手法は分子で「型」をとることから、金型で鉄型をつくる過程にちなんで「モレキュラーインプリント法」（分子錠型法）とよばれており、得られた人工レセプターをインプリントポリマー（錠型高分子）といえる。これにより、目的分子がどのような形でも選一分子設計を行うことなく目的の化合物に応じた人工レセプター（テーラーメイドレセプター）の合成が可能となった。その特徴として、a) 調製が容易、b) 安価に大量合成可能、c) 汎用性が高い、といった長所がある。

4 モレキュラーインプリント法による人工レセプターの合成（図1）

通常、インプリントポリマーは3段階で合成される。

4.1 複合体の形成

水素結合やイオン結合などのほか、配位結合、疎水相互作用など、全ての共有結合により相互作用が可能である。機能性モノマーにはアクリル酸や各種ビニルモノマーがよく使われる。この時の複合体の形成が合成後のインプリントポリマーの認識力、選択性に大きく影響する。

4.2 架橋剤との重ねによる固定化

錠型分子と反応せず、複合体の形成を阻害しないまま機能性モノマーを固定化する必要がある。そのために主にラ

図1 モレキュラーインプリント法による人工レセプターの合成。
ジカル付加重合が用いられる場合が多い。低温での固定化、光による重合反応や溶媒を使わないプラズマ重合法などの固定化技術が併用されることもある。さらに、基板上や粒子の表面で固定化することで機械強度を増し、安定な機能材料を製造することもできる。

4.3 鉱型分子の除去
通常有機溶媒を用いて鉱型分子を除去し、目的分子に対して相補的な構造（型）が得られる。得られた高分子は鉱型分子に対して認識能をもつようになる。

5 インプリントポリマーの特徴
こうして得られた高分子は有機溶媒等の化学処理に対しても安定で、温度や酸性度においても幅広く範囲で使用可能である。親和性や選択性の点で天然の抗体には及ばないが、その機械的強度の高さのために性能が安定していること、繰り返し使用に耐えることが大きな長所である。さらにモレキュラーエンプリント法は、従来の設計・合成に基づく手法よりもはるかに簡便で、かつ様々な分子に対応して適用可能な人工レセプターの合成法でもある。

6 インプリントポリマーの利用法
インプリントポリマーにより認識可能な化合物は、糖、ペプチド、ステロイドを含め、抗生物質等の医薬品、タンパク質、除草剤、有機物質（ダイオキシン）等、多種多様な化合物群であり、生物化学、医療面でも重要なもののほかである。この方法論により合成されたインプリントポリマーは、目的化合物の被相からの選択性的吸着、高速液体クロマトグラフィー（HPLC）の充填剤などの分離材料（図2参照）として利用可能である。こうして得られた高分子は溶媒耐性などをもつ頑強な機能材料であり、様々な応用が提案されている。

有害物質の除去
食品からのステロイドの除去や河川等からのダイオキシン、農薬等の除去、さらにこれらを無毒化する方法論も提案されている。

タンパク質分析素子
タンパク質を人工分子で選択性に結合させることは非常に困難であるが、最近モレキュラーエンプリント法により基板表面に高分子を被覆することでタンパク質を選択性に認識する材料が報告された。こうした技術により、センサーチップ（図3参照）として医療分野での簡便な診断法に利用されることが期待できる。

人工抗体触媒の合成
分子認識能をもつ分子は、ある種の化学反応を触媒する機能も有する。これを用いて、目的の反応を触媒する高分子をその目的に合わせてつくることができる（テラーメイド触媒）。

7 将来の展望
テラーメイドレセプターを目指したインプリントポリマーは、選択性や認識能力の点でまだ改良の余地があり、新たな機能性モノマーの合成や、固定化方法の改良が検討されている。例えば、シクロデキストリンなどのホスト化合物や金属錯体を使う方法が現在報告されており、さらなる発展が期待されている。

このような「型をとる」技術は半導体・印刷技術では広く普及し、～μmのスケールで配列が正確に組み込まれている。一方、分子で「型」をとるモレキュラーエンプリント法は、～nmという非常に微小な世界の刻印技術であり、ナノテクノジーの1つとして非常に大きなターゲットであることはいうまでもない。このような、安価で丈夫な材料の長所を生かし、テラーメイド分子の認識素子（材料）の開発はさらに進歩しており、各種分野での応用が期待されている。

参考文献
1) J.-M. レーン、竹内敬人訳、「超分子化学」（化学同人）
2) 西尾元宏、「有機化学のための分子間力入門」（講談社サイエンティフィック）
3) 小宮山真・長森裕行、「生命化学概論」（丸善）
4) 松井淳・竹内敬人、化学と工業1997年、50巻、597頁。