へッドライン

身近なものを素材として使う実験

アトムのランプ
～身近なものをを使った炎色反応～

Submitted by TAKAHASHI Miyuki, MITSUGI Fukutaro

提案者 高橋 美由紀・三次 福太郎
追試者 小泉 貴寛

港区立青山中学校, 町田市立薬師中学校

1 はじめに

夏の夜空を彩る花火の色は、炎色反応を利用したものである。炎色反応の色の変化は物質にどのような原子が入っているかを調べることができる。授業でよく行われているのは、水銀線などで光を発生させ、ガスパーカーの炎に入れる方法である**1−3**。しかし、この方法では家庭で行うことが難しいし、炎の色が長続きしない。

そこで、ガーゼの表に結晶を作り、アルコールをしみこませて燃やす炎色反応を紹介したい**3**。ガーゼの表面で効果よく反応ができるため、実験の色鮮やかで長く続く。家庭にある身近な材料を利用して簡単な反応を見ることができます。興味・興奮を高めることができ、原子を身近なものとしてとらえることができる。ごく少量のエタノールで、比較的安全に30 cm以上の大きな炎を出すこともでき、キャンプファイヤーなどでの利用も考えられる。

2 準 備

器具：乳鉢、乳棒、プリンカップ、割りばし、ドライヤー、ピンセット、灰皿、金属製灰皿、クリップ（大）、流し合用の金網（100 円ショップで入手可能）、ガスマッチ

材料：ガーゼ（個別実験用 8 cm × 8 cm、実験実験用 30 cm × 30 cm の二枚重ね）、新聞紙、ぬれ雑巾

薬品：お湯、青紫水彩画の具、食塩、重曹、炭酸カルシウムでできたチョークの粉、スキミルク（粉末）、焼きミヨウバン（カリウムミヨウバン）、黒コショウ、炭酸リチウム（陶芸材料店で購入可能）、無水エタノールか消毒用アルコール（ポリエチレンの洗剤用タレビンに小分けしておく）

3 実験操作

3.1 実験方法**4−5**

(1) 食塩、焼きミヨウバン、黒こしょう、乳鉢で細かくすりつぶす。薬品小さじ2杯をプリンカ

ップに入れ、全体にしみこむ程度のお湯を加えて割りばしで混ぜ、ペースト状にする。

(2) (1) のカップに入れる。ガーゼにしみこませる。液がガーゼの繊維にしみこむ程度がよい。

(3) 多すぎると乾燥に時間がかかる。ガーゼの穴を完全にふけるように注意する。

(4) (2) のガーゼを新新聞の上に置き、割りばしで押さなければならずドライヤーで乾燥させる。（ガーゼの繊維の表面を包むように、細かい結晶ができる。）写真1−a

(5) これにエタノールをしみこませる。（やっとしみこむ程度がよい。多すぎると炎色反応が出るまでに時間がかかる。）

(6) ガスマッチで、ガーゼの下の火をつける。

(7) 火を消すときは、ぬれ雑巾をかぶせる。

3.2 色のついた大きな炎

30 cm × 30 cm の大きなガーゼを二枚重ねにして結晶を付着させる。金属製灰皿に流し合用の金網をのせ、その

化学と教育 51 巻 4 号（2003 年）

NII-Electronic Library Service
上にガーゼを広げる。エタノールをしみこませ、ガスマッチで下の方から火をつけると、30 cm 以上の色のついた大きい炎ができる。消火のために、大きな雑巾を作ってぬらしておく。

写真 2 <color>。

3.3 事故防止
燃焼中の炎や、燃焼後の熱い皿によるヤケを注意する。エタノールは可燃性、引火性があるので、沸らすケレンのしつや用タービンに小分けし、火のそばに置いたり燃焼中の炎にエタノールを追加したりしないようにする。

4 解 説
4.1 確認できる原子と、身近な物質の例

表 1 炎の色と身近なもの例

<table>
<thead>
<tr>
<th>炎の色</th>
<th>確認できる原子</th>
<th>身近なもの例</th>
</tr>
</thead>
<tbody>
<tr>
<td>青</td>
<td>エタノール</td>
<td></td>
</tr>
<tr>
<td>深赤色</td>
<td>リチウム</td>
<td>炭酸リチウム</td>
</tr>
<tr>
<td>赤紫色</td>
<td>カリウム</td>
<td>焼きミョウバン（カリウムミョウバン）、黒コショウ</td>
</tr>
<tr>
<td>赤橙色</td>
<td>カルシウム</td>
<td>炭酸カルシウム（できたチョークの粉、スギミルク（低酸カルシウム）</td>
</tr>
<tr>
<td>黄色</td>
<td>ナトリウム</td>
<td>食塩（塩化ナトリウム）、塩（塩酸水素ナトリウム）</td>
</tr>
<tr>
<td>青緑色</td>
<td>鋼</td>
<td>青色水彩絵の具（鋼フタロシアニンブルー）</td>
</tr>
</tbody>
</table>

理科の授業では、生徒一人ひとりが個別に実験を行い、ボケキに色のちがいを比較させ、身近な物質にどのような原子がふくれているか推測させる。選択理科や部活動では、炎色反応が出る身近な物質を生徒たちに調べさせ、予想を立てて実験するとよい。

4.2 原理の説明
ガーゼにしみこんだエタノールが、毛細管現象によって結晶のすき間を通るので、ごく少量のエタノールが効率よく燃焼し、反応が長続きする。また、ガーゼの表面が結晶で覆われているため、ガーゼが燃焼してしまう前に、表面で炎色反応がおこり、鮮やかな炎が出る。

5 おわりに
この方法はとても簡単に効果的であり、個別実験も演示実験を行うことができる。鮮やかな炎は生徒の関心・意欲を高めるため、生徒たちは失敗をくからしながらいろいろな物質を使って何度も実験していた。身近な物質を使って実験を行うことにより、原子を単なる知識としてではなく日常生活に関連づけてとらえさせることができる。

参考文献
1) 新編 新しい科学 第一分野 上 東京書籍 (2001).
2) 長谷三郎・武田一美監修「実験練習大事典（化学）」 p.308 東京書籍 (1982).
3) 高橋美由紀・三木昭一郎 設計者 展開実用新案 第3006853号 炎色反応がおきるアルコールランプの芯 (1999).
6) まっち英術館 http://www.alps.or.jp/try/.
7) 科学技術庁基盤調査委員会、編 図解食品成分表 女子栄養大学出版部 (1999).

時間 準備に要する時間 20分 実験に要する時間 10分
種類 ○演示/○生徒実験/○科学部
難易 教師が実験する場合 難しい/○易しい
生徒が実験する場合 難しい/○易しい
費用 1回の実験費用（道具や材料があれば）0円 炭酸リチウム（1kg）2,650円

提案者連絡先：高橋 174-0041 板橋区舟渡1-8-14 501（自宅）。
三次 344-0843 横浜市南区長尾台町229（自宅）。
追試者連絡先：396-0386 平成4年玉川早稲田大学工学部336（勤務先）。

<color>マークのついている写真：図は化学と教育誌のホームページの "カラーライブラリー" にて、カラー写真を公開しています。是非ご覧下さい。URLは表記。

化学と教育 51巻4号 (2003年)