協議会だより

『全国高校化学グランプリ』と『国際化学オリンピック』

化学の得意な高校生の日本一、世界一を決める大会

1 独創性のある化学教育を目指して

『高校化学グランプリ・国際化学オリンピック小委員会』では「国際的に通用する高校生を育てるための化学教育」を目標として、大学入試の枠を外れた「創造性・独創性を育む・化学教育に取り組んでいる。具体的には、年1回の『全国高校化学グランプリ』を開催し、国内の成績優秀者を表彰するとともに、「国際化学オリンピック」へ派遣する高校生を選考することを実施している。過去の『全国高校化学グランプリ』の参加者は、300人→600人→900人→1200人（数字は概数）と着実に増加しており、より多くの高校生が化学に目を向けて、独創性のある化学に実感できるようになることを実現つつある。このことが、世界に通用する高校生を育てる底辺建大なるばかりでなく、理科離れを回避することに繋がることは言うまでもない。

2 一次選考（筆記試験）の選抜方法

昨年夏に行われた全国高校化学グランプリでは、一次選考会に1164名（全国20会場）の参加があった。2002年のグランプリは2003年の国際化学オリンピック参加者の選考会でもあるため、1.2年生の選考を別枠で行った。また、初めてのオリンピック選考であるとともに、7月の期末試験の時期にオリンピックに派遣することを考慮した上で、上位4名の成績が優秀な高校1校を代表校に選ぶという方式を取りれた。そのため、一次選考通過者（二次選考に進める者）は、1.2年生で構成される4名×5校=20名と、学年を問わない成績上位11名の合計31名とした。

一次選考選考者に関しては現在でも委員会内に様々な議論がある。昨年の選考会では、同一高校の4名をオリンピック代表としたが、本来は個人競争であるため、次回からは、1.2年生の上位4名を（高校がバラバラでも）選出することにした。ところが、この選考方法では、成績優秀者が学内事情その他のによりオリンピック参加を見送らなければならない状況が発生することも十分に考えられる。そのため、候補者の数を確保しなければならなく、一次選考通過者の中に1.2年生が多数含まれることが望ましいことになる。一方、当然のことながら、一次選考の成績上位者のほとんどは3年生である。したがって、一次選考における全体の成績上位者と1.2年生の中の成績上位者を別枠で考えて二次選考参加者を決めることが必要。ちなみに、2003年のグランプリでは、『グランプリ枠』55名、『オリンピック代表選抜枠』5名とし、後者はオリンピック参加の意志のある1.2年生に限定することとして、グランプリの参加者が年々増加していることを考察し、二次選考に進めるのが60名であるのは少なすぎる（2002年は一次選考の参加者が1164名なので、二次選考に進むのは実に19.4倍の数をもっている）と思われる。しかし、教育的な見地からもドラフトのある実験台を使用することが望ましいことを考慮すると、現状では、東京大学教育学部にある60名用の施設を使用する以外の方法は見つからない。今後は更なる参加者増が見込まれ、新しい選考システムを考える必要がある。

3 成績優秀者の決定と表彰

2002年のグランプリでは、優秀賞5名、金賞17名、銀賞23名（オリンピック枠で選定された20名のうち4名は個人選考の41名より一次選考の成績が上位だったため、二次選考の成績を加算後、優秀賞、金賞、銀賞を授与した）の他、今回新たにオリンピック金賞（一次選考では46位以下であっただが、オリンピック選考枠で二次選考に進み、金賞受賞と同等の成績を収めた者）2名とオリンピック銀賞（同様に銀賞受賞と同等の成績を収めた者）10名が選定された。また、オリンピック枠を別途定めたため1位よりも二次選考に進めなかった一次選考の次点20名には奨励賞が授与された。さらに、オリンピック枠で二次選考に進出した五校（栄光学園高校、大阪聖光学院高校、開成高校、鹿島東邦高校、創価高校）には優秀表彰を授与され、その内の創価高校が国際化学オリンピックの代表に選出された。

例年、高校化学グランプリの成績優秀者に対しては、作文コンペックルと合同で表彰式を行いが、昨年に限り、日本化学学会の野依良男会長の講演「化学は美しく、面白く、社会に貢献する」と共に11月16日に国立科学博物館新宿分館で表彰式が行われた。会場には高校生を中心とした250名の参加があった。また、講演会後に催された全国高校化学グランプリの受賞生と野依会長および来賓との懇親会は、受賞者にとって一生の思い出となるとともに、化学に対するより一層の愛着が生まれたと思われる。

4 世界で通用するために

さて、本年7月にアテナで行われる国際化学オリンピックを目指して、昨年のグランプリで選抜された高校生のトレーニングが春休みから始まっている。委員会メンバーによって和訳された準備問題集を用いてトレーニングしたり、高校生が実際に実験を行ったり、時間がいくらあっても足りない。

今後は、本年夏の国際化学オリンピックに向けた訓練WG（ワーキンググループ）、本年夏に開催される全国高校化学
＜基礎固め＞化学

小林一光 著
化学同人, 2002
本文 126 頁, 1,800 円 + 税

昨今、大学ではバイオや環境系の名を掲げた学科が次々と新設されている。これらはふたたを開ければ化学が基本となる材料工学の複合領域であり、化学なくしては先に進まない。にもかかわらず、高校の選択カリキュラムでは化学をほとんど経験せずにこの学科に進む学生が増えてきている。本书は化学に不じまない大学生が短期間で化学のエッセンスを学び知るに役立つ 1 巻である。著者は現の現役講師であり、本書は受験参考書的な色合いも濃いかかったが、そうではなく大学からの実践の化学に役立つ演習書としてもコンパクトにまとまっている。ページ数も通常の専門書の半分程度と決して多くないが、いくつか特長点がある。まず、周期律表の説明、光の吸収を含めた原子の物理的性質と周期的な電子配置から始めて、分子結合を作り p, σ 混成の電子軌道をわかりやすく図解で説明する部分である。これは化学の基礎を築く者にとっては重要で、化学における応用とは何かの理解を深めるのに役立つ。次に本書のページの半分以上が充実しており、基礎の理解を不消化に終わらせまいとする著者の努力が bidi している。本書の後半では、ioni の酸化還元と平衡論を中心とする電気化学のウェイトが豊かな pka や酸化還元電位などの数値データ表も役立つ。これを利用してその種の演習問題も充実している。終わりに付録として、化学実験のレポートで重要な有効数字の扱いが数ページ加えられており、化学基礎実験への活用も期待されている。

全体として図解と二色刷りの表、グラフを使った読みやすい構成が並列固めの理解を促すことに役立っている。本書は化学の入り口にある物理化学、とくに分子とその結合のセリスをまず身につけることを念頭に編集されたものと思われ、この意図には共感する。コンパクトな分量という制限ゆえに難しい要求であるが、欲をいえばページを増やして簡単な熱力学と有機反応論を加えて欲しい感がある。また、付録の有効数字については、誤差の扱い（標準偏差と変動係数）を加えておけば完璧である。とはいえ、講義に使ってみたい一書であることには違いない。

（桐蔭横浜大学工学部 宮坂 力）