激変した教育環境の中で受け継ぐべきもの

MIZUNO Hirotaka, KAWAI ZUMI Fumio

水野博隆, 川泉文男

愛知県立明穂高等学校 教諭, 名古屋大学工学研究科 教授

東海地区で化学教育有功賞, 化学教育賞を受賞された先人の業績をまとめた。そして本号に再録したこれから
先人の5報の報文について，その今日的な意義を述べた。

1 はじめに

シリーズ「先人に学ぶ化学教育」の第3回に東海地区的
先生方の業績を取り上げて紹介して欲しい，との依頼を当時本誌編集委員であった川泉が受けてから1年程が経過し
た。「先人」という言葉に従い，本記事では本年より10年
以上前に受賞された東海地区関係の先生方の業績・発表さ
れたものを取り上げ，今日の観点から見ても学ぶべきもの
を探ることにした。

まず，本誌に掲載された化学教育賞・化学教育有功受
賞者の紹介記事を見て，何が評価されたのかを見てみた。
化学教育賞受賞者
第9回 榊友彦：多方面にわたる積年の化学教育推進への
貢献
化学教育有功賞受賞者
第1回 戸田進：化学を中心とした理科教育の実践的研究
第3回 村田豊：独創的な生徒実験の案出と幅広い化学
教育実践活動
第5回 岩下紀久雄：東海地区における高校化学教育への
貢献
第6回 馬場克太郎：研究団体育成による岐阜県高校化学
教育向上への貢献
第10回 柳原正気：東海地区における高校化学教育への
貢献
第13回 田中典男：東海地区における化学教育グループ
の組織化への貢献
化学教育有功賞受賞された6先生の「化学と教育」誌
への発表論文を見てみると，戸田先生のものは見あたり
ず，岩下先生，馬場先生のものは各1報である。これらの
先生方が努力された時期は東海地区で今日の化学教育協議
会の母体となった「化学教育委員会」の組織化とその目的
であった高校教師のレベルアップ活動が軌道に乗じはじめ
た時期である。それよりだいぶ年月を経た現在から10年
余以前においても，著者一人（川泉）は「高校教師の研
修は，教師自身の意欲，教務委員会，教員組合の微妙なパ
ランスの上に成立し…」とある大学教員が書かれていたのを
おころげながら記憶している。これらの先生方は，前例の
ない時期に，色々な偏見，ある場合には中傷と戦いながら，
高校での化学教育を充実させるための活動のパイオニア的
オルガナイザーとして，非常に努力をされたことが容易に
想像できる。

教育情勢は時代と共に大きく変わってきているが，将来
においても，文献での実績ばかりではなく，化学教育の充実
のため熱意をもって実践しておられる高校教師の実践活動
それ自体が正しく評価され，化学教育有功賞の対象者とし
て選考されることを強く願う。

本記事では，結果的に化学教育有功賞受賞者からは村田
豊先生，柳原正気先生，田中典男先生，さらに化学教育賞
受賞者の樋友彦先生が本誌（前身の「化学教育」を「本誌」
に含める。）に発表したものを再録することにした。

2 村田豊先生の気体分子量の測定実験

村田豊先生は『化学教育』誌に4報の報文をなされている
るばかりでなく，いくつかの発表や書籍の共同執筆を行っ
ておられる。御自身の教材研究の記録をまとめて自費出版
された「化学の実験」（昭和63年）の著者であり，実験に
ついて次のように記されている：
「化学は実験の学問であり，化学教育において生徒実験
の大切なこととは今さらいうまでもない。それ故，化学指導
のための教材研究として，学問としての理論面の研究と同
時に各種実験法の追究は化学の教師として必要欠くことの
できないことである，との信念のもとに殿を作り出して高
校化学教材に関連した各種実験について実験方法，手さわ
よく手に持てるもの，何を観察すべきか等，を調べてきた。
（中略）大学受験指導が強化されると共に，ややもすると実
この記事から、村田先生の化学教育における生徒実験への強い思い入れが感じられる。特に、実験装置の簡易性や安全性、および反応の観察に対する生徒の興味を高めることが指摘されている。村田先生は、生徒の反応を観察するために、適切な実験装置を用意する必要があると強調している。この実験は、化学実験の目的を果たすためには不可欠であるとされている。

4 田中典男先生の生徒に教える化学反応の実験

田中典男先生は、昭和55年4月から平成元年3月までの長い4年間、本誌東海支部ニューズレポーターとして活躍した。今回再録したものは、本誌Vol. 41（1993年）からの「生徒に教えるフェノールの3製法」とVol. 44（1996年）の「原子の構造を理解させる一助としての効果的な炭素反応の演示実験」である。まず、第1の記事を取り上げる。

1982年、田中先生は「大学入試が高校入試に及ぼす影響をめぐって」と題する論文Ⅰのはじめに、次のように述べている：

「学習指導要領を変えるより大学入試問題を変えた方が影響大、というのが教師おおかたの意見である。一例として電気陰性度の問題をとりあげる。高校では電気陰性度のようないすれぞれ、10年ほど前までは多分先生方が割り切っていた。ところが、K大学で昭和48年にこの知識があった方が有利な入試問題が出た。するとどれだけ早く、どのように、高校で一致に教材に組み入れたのだろうか。それから、多くの高校でこの種の問題が出題され、高校で電気陰性度を扱うのが常識化した。これはのはじの一例にすぎないが、大学入試に出るから教える。逆に出ないものは化学の真髄と思われるものまで消してしまわない。」

現在では、高校で電気陰性度を扱うのは常識になっているが、それでも、その利用としては無差別な化学や要素の知識ないものを化学としての真髄と思われることはましで消していない。
や化学反応が、周期表での位置や電気陰性度などに基づいて推定できるようにすれば、化学は趣味深い科目になると述べている。田中先生の授業は、いつも生徒に興味深く関心を与えるように展開されている。その実践例としてこの論文でフェノールの合成を取り上げ、その反応の仕組みを電気陰性度の概念で説明している。高校の有機化学は、生徒にとって物質の性質や反応が堂々と出てきて、「なぜ？」と「どのようにして？」という記述があり出てこない。そのため、有機化学は暗記物というイメージができてしまう。有機化学の面白さは、有機化合物の構造から、どのような性質があってどのような反応をするかを推測するところにある。この論文では、電気陰性度からフェノール合成の反応の仕組みを丁寧に説明している。そして最後には「高校生に教える場合、親電子（親核）置換反応という表現は使わない方がよいとおもうが教える側はこれをよく把握しながら教えるのがよい」と、教師への留意事項にも言及されている。

田中先生の授業には有機電子論が入っている。そして、1987年の化学教育研究協議会（三重）では、このようなことを述べておられた。「有機電子論を使って化学反応の骨子を教え、化学の興味をわくわくさせたい。そのためには、①周期表の酸化反応、②原子の電子配置、③共有結合についてを講義し、わかりやすい授業を進めていく必要がある。」このように述べた後、いくつかの有機化学反応を取り上げ、有機電子論を使ってその反応機構を説明した。

田中先生の報告書に1件再録したものは「小・中・高校のページ」に掲載された「原子の構造を理解させる一助としての効果的な化学反応の実験」としての有機化学の授業の一部として、田中先生はここで化学反応の実験を取り上げている。

化学に対する興味付けや理解を深めるために、生徒実験を行ったり、物質などに直接触れることは非常に大切である。できる限り多くの生徒実験を実施するのが理想的であるが、時間が実験設備の関係で難しいので、それを補うために演出実験を行うこともある。しかし、演出実験は、生徒実験にはない利点が多いある。たとえば、演出実験は授業内容への導入として利用できるし、授業内容の理解を助け、内容を深めたりするために用いることもできる。また、演出実験を行うことで生徒と教師とのコミュニケーションが深まり、生徒実験とは違った点で生徒に物質について様々なことを考えさせることができる。いずれにせよ、演出実験は化学の授業に必要な手段の一つであり、適切に工夫された演出実験は全体として授業の効果を高めることができる。そうしたことを十分に理解された上で、田中先生は授業で演出実験を積極的に取り入れ、生徒の理解度と興味付けに効果を上げてきた。田中先生は、「生徒を化学好きにすれば生徒は自分で勉強していく、化学好きの生徒を多くするにはどうすればいいかをいつも考えて授業をしてきた。'

5 柳友彦先生の論文と高校化学・物理における熱学

柳友彦先生は名古屋大学教養部での教育ばかりでなく、東海地区での化学教育の普及に大きく貢献された。現在の東海地区化学教育協議会の行事に高校教師を対象とした「東海地区高校化学教育セミナー」（平成17年は3回）があるが、その前身となる柳友彦先生の学習セミナーを化学教育有功賞を受け賞された諸先生方と協力して組織・運営された。今回、色々な記録を調査してみると、この学習セミナーは10回（1979年）までは、何と夏休み中の日間連続、という形で行われていたことを筆者らは知った。柳友彦先生はこの学習セミナーで幾度となく講師を演じておられる。

柳友彦先生の本誌での発表は今回再録したもののみであるが、その内容は柳友彦先生の専門である物理化学の熱力学をさらにその分野で初学者には難解なエントロピーに関することである。

現在の高校理科において熱力学の分野は化学ではなく物理で取り扱われている。しかし、最近の物理の教科書を見てみると、「熱力学第一法則」については比較的よく記述されていて、大学1年生を対象とする基礎化学の講義での内容に重なるときさえもあるのに対して、「熱力学第二法則」は「自然変化は不可逆である」というような表現とされる一方で、「自然変化は不可逆である」という表現は物理化学を初めて読む学生には理解が難しいエントロピーに関するものである。
での講義内容とのギャップがもっとも大きいのは何といっても化学である。名古屋大学1年生の授業評価においても化学の評価は例年若しくないが、その大きな原因の1つは、大学1年生が量子論や熱力学を“化学には関係のない物理学の領域のもの”と先入観から脱ることができず、量子論や熱力学を含む化学の授業にとりまどいを感じていることと思う。高校化学において、生徒が「エントロピー」という言葉にふれる機会があるようになれば、大学生となっってからの化学学習でのまとまりの程度も低くなるのではないか。エントロピーは高校化学指導要領の枠外にあるから大学入試には出題されないであろう。しかし高校化学教員の方には、筆者も柳先生の論文（これも、一説で、ただに理解できないかもされないが、それでもこそ）をじっくりと読んで実感をもって理解して頂き、生徒、「エントロピー」って何ですか？」という生徒が現れたときはその生徒に自信をもって説明できるようになって頂きたい。そして、固体から液体への状態変化、液体から気体への状態変化の場合、系内部の分子全体の状態がどのように乱雑になるかなどを定量的な尺度であるエントロピーを用いて解説して欲しい。

筆者等も柳先生の馨喫に接した者であるが、3年程前、同級生が集まった折りに柳先生のことに話を及んだ。そして女子学生の就職が困難であった時代であったため、柳先生はまず、その実態を学生に認識させることが必要との御判断から、私的な形での女子学生の先輩と教養部化学系女子学生の進路に関する懇談会を御推奨されて、出席者の一人は話した。大学の貴重財は教育と教育にあるが、評価されにくい教育の面においても一人の教師として努力されておられた柳先生の姿を今さらながら思い浮かべた。全国の大学で教養部が解体されてすでに10年余が経過し、大学にも、実利を生む研究を強いる風潮が強くなった今日、柳先生のような大学教員を求めるのは木に登って魚を求めることなのであろうか？

6 おわりに

今回は、先人の努力の跡をたどる機会をえて、以下のことを感じた。

1. 先生を騒り立てたものは、“科学的に正しいという同時に生徒にとってよりわかりやすい教え方をどうすればよいのか。それを考えるのが教師の責務である”ということに尽きるのではなかろうか。再録したいずれの記事にも、押し付け的なニュアンスが全く含まれていない点がこれから先人の人間としての広がりを反映しているのであろう。

2. 教科教育的分野の業績はいわゆる Science Citation Index の対象にはなりにくい。しかし、先人の優れた業績を次世代、あるいはそれ以後の世代が正しく受け継ぐためには、日本化学会は化学と教育誌などの内容が各種の検索ソフトで正しく検索される（筆者等の知識不足もあるが）方策をもっと考慮することが今後一段と重要になる。

参考文献

1) 田中典男, 化学と教育, 30, 361 (1982).

みずの・ひろか

筆者紹介：1977年名古屋大学大学院修士課程修了。理学修士。同年より愛知県立高高等学校教授。2004年4月より愛知県立東和高等学校に勤務。専門：化学教育、趣味：テニス、スポーツ観戦。連絡先：461-0011名古屋市東区白壁2-32-6（勤務先）。

かわいずみ・ふみお

筆者紹介：1965年名古屋大学理学部化学科卒業。2004年4月より現職。工学博士。専門：化学工学基礎としての物理化学趣味：ガーデニング、ドライバー。連絡先：464-8603名古屋市千種区不老町名古屋大学工学研究科（勤務先）。

化学と教育 53巻12号 (2005年) 669