特集

漁船

漁船の安全性

正会員 松 田 秋 彦* 番 浦 剛 正**

1. 船舶の安全性に関する国際規則

現在、船舶の安全については、「海上における人命の安全に関する国際条約（SOLAS 条約：The International Convention for the Safety of life at sea）」により、国際航海を行う旅客船及び総トン数 500 トン以上の貨物船に対し、その構造、設備に関し、一定の基準及びその基準を担保するために検査を受けることを求める。SOLAS 条約は、1914 年の Titanic 号の沈没を契機とし、1914 年に欧米主要海運国 13 か国の出席のもとで開催された「海上における人命の安全のための国際会議」において採択された。1948 年の SOLAS 条約は第一次世界大戦の影響により未発効であったが、1929 年、英国主催の国際会議において我が国を含む 18 か国が参加の上で採択され、1933 年に発効した。

一方、海上の安全を効果的に促進するには常設の国際機関を設立すべきであるとの考えから、1948 年に政府間海事協議機構条約が採択され、1948 年に我が国も調印の上で発効し、政府間海事協議機構（IMCO：Inter-Governmental Maritime Consultative Organization）が設立された。当該機関は、1982 年に現在の国際海事機関（IMO：International Maritime Organization）に改称された。

なお、SOLAS 条約は、第 5 章（航海の安全）を除き漁船（漁船に従事する船舶）には非適用となっているが、IMO においては、漁船の安全性についても議論が行われている。

2. 漁船の安全性に関する国際規則

2.1 24m 以上の漁船の安全性に関する国際規則

漁船の安全性に関して、1977 年にスペインのトトレモリノスにおいて「トレモリノス条約」が採択され、1982 年に発効に至らなかった。そこで、アジアの国々の批准のしやすさを念頭に全面改定され、1993 年に全く新しいトレモリノスにおいてトレモリノス条約が採択されている。本規則は、国際規則を受ける漁船（漁船に従事する船舶）に適用されている。

一方、2004 年の 12 月に発生したスマトラ沖地震において、多数の小型漁船、特に 12m 以下の小型漁船が損失した。その後、代船建造が活発化したが、従来と同型、同手法が採用されており、再建された漁船の安全性は従来とほぼ変わらなかった。そこで、漁船の安全性確保に対して危機感を覚えた FAO など関係者により、2005 年から「12m 以下の甲板
を有する漁船及び甲板を有しない漁船の安全に関する勧告（Safety Recommendations for Decked Fishing Vessels of Less than 12 meters in Length and Undecked Fishing Vessels）（以下、「勧告」）の策定が開始され、2010年に完成した。

これら三つによって小型漁船から大型漁船そして甲板を有しない漁船を含む、すべての漁船を網羅する指針やガイドラインが構築されることとなった。

一方、これらの指針やガイドラインはなかなか各国の国内法へ取り入れが進んでいないことから、特に遅発途上国が国内法へ取り入れ際に参考となる手順書（Guidelines to assist competent Authorities in the implementation）を策定した。これは、「1973年の船舶による汚染の防止のための国際条約に関する1978年の議定書（International Convention for the Prevention of Pollution from Ships, 1973, as modified by the Protocol of 1978 relating thereto）」など、「海洋汚染防止条約（MARPOL条約）」の国内法への取り込みを手助けするために策定された。「MARPOL-How to do it」が有効であったため、それを参考にしている。

2.3 漁船の安全性に関する規則の策定の経緯及び方針

2.3.1 12m以下の漁船及び甲板を有しない漁船の安全に関する勧告

『勧告』は先述の通り、現場の小さな造船所でも「この勧告に従えば、安全な漁船が建造できる」ということがコンセプトである。そこで、この勧告は以下の様々な特徴がある。

・ヨーロッパの漁船の規則、特に復原性の規則は船体形状の違いからアジアの漁船にとって要求が過大である場合があるため、日本の国内法や韓国が提案している基準などを併記し、いずれかの規則を満たすばよいようにした。

・Annexを充実させ造船所が他の規則やガイドラインを参照することなく安全性の高い漁船を建造できるようにした。

勧告は12の章と32のAnnexで構成されている。各章は会議出席者および出席国の得意分野で割り振り、自国の規則をたたき台として要件を作成し、それを基に議論を重ねる方法で作成された（日本では第2章「構造、水密の安全性及び設備」と第5章「防火及び消防」を担当）。

これらの作業の中で、第3章の「復原性及び関連する耐有」については各国から様々な意見が出ることとなった。原案では、IMOがSOLASなどを採用している復原性基準を勧告でも採用することとなっていた。その仮設を下記に示す。詳しくは勧告を参考にされた。

①復原力曲線（GZ曲線）の図面面積は、傾斜角30度で0.055m×rad以上、傾斜角40度または海流流入角θfが40度未満のときは、その角度で0.090m×rad以上である。さらに、傾斜角30度と40度または30度とθf（θfが40度未満の場合）の間の復原力曲線（GZ曲線）の図面面積は、0.030m×rad以上である。

θfは、主船体、船橋または甲板室にあって速やかに風雨密に閉鎖できない開口から浸水の始まる傾斜角をいう。この基準の適用上、著しい浸水を起こす恐れのない小さい開口は、無視して考える。

②傾斜角30度またはそれ以上の角度で復原桿をGZは、200mm以上であること。主管庁の認めるところにより復原桿を減じてもよいが、減じる量はいかなる場合でも2×(24-Loa)％を超えてはならない。ここでLoaは1.224mの定義により、単位はメートルとする。

③最大復原桿GZmaxは、25度未満であってはならない。

④初期メタセンタ高さGMoは、350mm以上であること。

しかしながら、この基準のうち、3番目の項目が日本漁船には受け入れることが困難である。日本からは策定委員において図1に示すような日本の漁船の復原力曲線をGモを変えて計算した例を示した。本例ではGM = 2.0mとなる重心位置まで重心を下げなければIMOの基準をクリア出来ないのに対し、実際の漁船は1.75mであるのような波浪中でも十分に安全であることが水産工学研究所における自由航走航法模型実験によって示されている。すなわち、IMOの基準を単純に採用する場合、日本の漁船にとっては安全性の要求が過大となること
を説明した。さらに、日本と似た船型の漁船が多い韓国も日本を支持した。
一方、ヨーロッパの漁船は長さ規則を実施している場合が多く、小型漁船といえども総トン数の大きな漁船が多い。Barry Deakin* は英国における小型漁船の登録長とトン数を図 2 のように整理している。英国には10m と 12m で規則があり、基準内で総トン数を大きくしようとした結果がグラフからも確認できる。

このようなヨーロッパ型の漁船は横揺れ周期が比較的長いため、日本小型船船検査機構の復原性規則を適用すると、その基準を満足することが難しい。

そこで、勧告では復原性基準についてIMO 標準、韓国が提案した式、日本小型船検査機構が用いている動揺周期の表などを併記し、それらのうち、いずれかを満足すればよいこととした。すなわち、アジアの漁船に無理なく適用できる復原性規則となっている。

図 2 英国の漁船の登録長と総トン数

一方、Annex は必要と思われるものをすべて用意したため、最終的に Annex XXXII にまで膨らんでいる。通常であれば、他の条約や基準などを示すだけで良いところを、全文掲載しているほか、例えば Annex II では木造船の木組みの仕方、釘を打ち位置や角度について解説するなど、微に入り細を穿つ勧告となっている。

以上のように本勧告はヨーロッパの標準手法を採用してきていた漁船の規則がアジア漁船や発展途上国の漁船、造船所などを考慮に入れて実効性のある基準にしようという転機となったと考えられる。

2.3.2 ケープタウン協定

ケープタウン協定は「1977 年の漁船の安全のためのトレモリノス国際条約に関する 1993 年のトレモリノス議定書の規定の実施に係る 2012 年のケープタウン協定」という長い名前が示すことなく、1977 年に採択されたあと、1993 年に再度改訂されなかったにもかかわらず、発効には至らなかったため、2012 年に再々度改訂・採択された協定である。

IMO はトレモリノス議定書（当時）の早期発効を目指し、漁船数の多いアジアの国々の批准が必要となり、一方、既批准国についても国内規則への取り入れを可能とする合意書方式を検討するために質問書を 2008 年末に各国へ発出した。この質問書の回答をもとに 2010 年 1 月の第 52 回船舶総合検査会（SLF52）及び 9 月の中間会合を経て 2011 年 1 月の SLF53 において新議定書案が最終化され、同 5 月の第 89 回海上安全委員会（MSC89）で新議定書とすることを決定した。さらに、2012 年 10 月に南アフリカのケープタウンにおいて採択され、ケープタウン協定となった。

ケープタウン協定は漁船の長さで規制する規則であったため、ヨーロッパの漁船が 24m で 300 国際総トン程度あるのに対し、日本の漁船は 100 国際総トンにも満たないため、日本を含む総トン数規制を実施しているアジア漁船には設備基準が非常に過大になっていた。そこで、2007 年に国際労働機関（ILO: International Labour Organization）において長さと総トン数の読み替え規制が採用されたことから、同等のトン数読み替え規定を盛り込むこととなった。その結果、24 m = 300 国際総トン、45 m = 950 国際総トン、60 m = 2,000 国際総トン、75 m = 3,000 国際総トンと読み替えることで総トン数での規制が可能となった。さらに、適用船船は公海上を航行する漁船であることから、日本を含むアジア諸国にとって批准しやすくなっている。
ケーブル対流電は22が示すが、それらの国の24m以上で公海上を航行する船の合計数が3,600隻以上となった日から12ヶ月後に発効することと採択会議（図3）で決まった。これは、EU諸国が批准のまでは数が不足するため発効せず、実質的にアジア諸国が批准することによって発効する要件となっている。

3. 漁船の事故とその対策

3.1 漁船の安全関係国内規則

我が国は、昭和8年（1933年）に前述のSOLAS条約を国内法に取り入れる形で船船安全法（昭和8年法律第11号）を公布（翌9年施行）した際に漁業の作業等を行う漁船の安全性を考え、漁船特殊規則（昭和9年通信省・農林省令）、漁船特殊規程（昭和9年通信省・農林省令）等を制定した。また、当時、総トン数20トン未満の漁船（小型漁船）には船船安全法を当分の間、非適用とした。

3.2 小型漁船への船船安全法の適用拡大

昭和40年代から遠方で操業する小型漁船が増加し、海難事故の発生件数も目立つようになった。しかし、これに対応する明確な安全基準がなかったことから水産庁は総合的な安全性向上の指針として、総トン数3トン以上20トン未満の漁船の運航、構造、設備及び性能の基準を定め、昭和43年（1968年）に公表した。

一方、当時、小型のレジャー用船船の隻数が急激に増加したが、搭載設備、気象・海象等に関する知識の乏しさ等により海難事故が発生していたことから船船安全法の一部改正等の国会審議において、小型船及び小型漁船に対して安全対策を図るべきである旨の勧告がなされた。これを受けて、当時の運輸省は、水産省と協議の上、昭和49年（1974年）に船船安全法を改正し、100海里以上で操業する総トン数5トン以上のサケ・マス漁船等特定の漁業種類及び総トン数の小型漁船に適用を拡大し、小型漁船安全規則を制定した。その後、その他の漁船への段階的適用を経て、昭和53年（1978年）の「船船安全法第三十条の船船の範囲を定める政令」の全面改正により、各地方の海岸から12海里以内の海面又は内水面に従事する漁船については、船船安全法を適用しないこととした。

3.3 漁船の事故の現況と対策

船船安全法等の制定後、海難や船船関係技術の進歩等を背景に船船安全法等の改正等が行われている。SOLAS条約の改正は、基本的に漁船は適用対象外であるが、これらの改正事項等を船船安全法に取り入れる際には、漁船の構造、操業の実態、事故事例等を踏まえた運輸安全委員会からの報告等に基づき、国土交通省と水産庁が協議し、適用の可否を判断している。

海上保安統計年報の要救助海難種別別の平成26年度のデータによれば、漁船は一般船船と比べ衝突、転覆の事故件数に占める割合が多い（図4）。

【図4】海難種別ごとの割合

3.3.1 衝突事故への対策

衝突の原因としては、約8割を見張り不十分が占めている（図5）。衝突を予防するために有効な対策の一つとしてAIS（Automatic Identification System：自動衝突予防装置）がある。AISは、2000年のSOLAS条約の改正を踏まえ、国内法では、船船設備規程（昭和9年通信省令）において、漁船においても300トン以上の船船であって国際航海に従事するもの及び総トン数500トン以上の船船であって国際航海に従事しないに適用し、平成20年（2008年）7月1日までに搭載が義務付けられている。しかしながら、平成24年（2012年）にAISの
義務搭載船ではない漁船増栄丸（総トン数119トン）とパナマ籍貨物船NIKKEI TIGER（総トン数25,047トン）との衝突事故が発生し、増栄丸の沈没により13人もの命が失われた。

当該事故について運輸安全審査会から増栄丸にAISが搭載されていれば、避航方法及び避航開始時間について検討する時間的余裕が得られた可能性があると考えられる等の報告がなされた。また、同委員会は、運輸安全審査会設置法第28条に基づき、水産庁長官及び国土交通省大臣に対し、現在、AISを搭載していない漁船についてAIS有効性の一層の周知その他の早期普及に必要な施策の検討を行うことが求められた。これを受け、国土交通省は、水産庁、総務省、海上保安庁と共に4省庁が参加する「漁船に対するAIS普及に関する関係省庁検討会」を設置した。当該検討会での議論を経て国土交通省及び水産庁は、AIS搭載の周知・啓発を柱とする安全キャンペーン、関連団体等に船長事故ハザードマップの活用の指導の通達の発出等を実施した。また、水産庁は平成26年4月からAISの設置に係る費用の助成や実質無利子の融資制度を設けた。

3.3.2 乗揚事故への対策
漁船の海難事故においては、乗揚に失敗して数件が多いのは乗揚であるが、事故の原因としては居眠りが最も多く約3割を占めている（図6）。

平成21年（2009年）にIMOにおいて旅客船及び総トン数150トン以上の旅客船以外の船による居眠り等船長航海当直者の異常を感知した場合、船長、船長室等に警報を鳴らすことにより、事故を防ぐシステムBNWAS（Bridge Navigational Watch Alarm System：船橋航海当直警報装置）の搭載義務付け等に関するSOLAS条約の改正案が採択された。

また、平成22年（2010年）、運輸安全審査会は、複数の事故調査等の結果を踏まえ、居眠りによる船船事故の発生を防止するため、国土交通省に対して運輸安全審査会設置法第28条に基づき、国土交通省は、居眠り防止装置の義務化等の施策の検討すべきである等の意見を述べた。

当審査会からの意見を踏まえ、国土交通省は、平成23年（2011年）、「船舶統制規程等の一部を改正する省令」を公布し、総トン数150トン以上の漁船等にBNWASの設置等が義務付けられることが態になった。

3.3.3 転覆事故への対策
漁船の海難事故においては、上述のとおり転覆が一般船舶と比較して数件が多いことが特徴的である（図4）。

船橋安全法の制定時は、漁船は横載呑水線の標示が非適用、また復原性の基準は設定されていなかった。水産庁は、漁船の復原性について「漁船安全計画」（昭和25年農林省令第124号）により乾舷、横メタセンター高さについて基準を定め、指導してきた。しかしご、漁船において、過積載、復原力の不足を原因とされる海難事故が多数発生したことから復原力の確保の必要が要請されてきた。

このため、水産庁は昭和38年（1963年）から3年計画で漁船の安全船橋、試験漁船の実船調査を行った上で昭和40年度末に漁船の実態に即した「漁船安全計画」を策定した。基準の内容は、漁船の出漁における保持すべき乾舷、横メタセンター高さ、漁具等の外力による静的荷重の限度及び積荷の移動防止について規定したものであった。
水産庁は、昭和42年（1967年）「動力漁船の性能の基準」（農林省告示555号）を改正し、この基準を漁船法に基づく総トン数20トン以上の漁船の建造許可の基準とするほか、満載営水線の標示については、指定漁業の漁船について、乾舷を示す標識を義務づけることとした。また、運輸省は昭和42年（1967年）に「船体復原性規則」（昭和31年運輸省令第76号）を改正し、漁船に満載営水線の標示と復原性基準を適用し、指導基準とした。その後、満載営水線条約の改正時に漁船安全法を改正し、総トン数20トン以上の全漁船について乾舷標示を義務づけた。

その後の漁船の復原性に関連した主な改正事項としては、IMOにおけるSOLAS条約附属書第II－I省の改正に伴う平成20年（2008年）の船舶復原性規則、船体変形規程（昭和27年運輸省令第97号）の改正がある。内容は、①漁船に適用されていたなかった損傷時の復原性能の基準の適用。②簡易な計算式により復原性能を間接的に評価していた基準を漁船の船体変形に適応できるよう個別船の船体および復原性能を直接評価できる基準への見直しの2点であった。

一方、平成21年4月に漁船第十一大栄丸（総トン数135トン）が追い波や海水の打ち込みによる傾斜により転覆し、11名の死亡事故が発生した。

当該事故における運輸事務局の調査報告書においては、漁業者が安全向上のための引き網船の新造又は改造を行う場合において、総トン数の増加が必要と認められる場合には、その対応方策について検討することが望ましい等とされた。

漁船の総トン数の上限については、漁業法（昭和24年法律第267号）第61条により規定されている。例えば、指定漁業の許可を受かった漁船について、その船体の総トン数を増加しようとするときは、農林水産大臣の許可を受けなければならない。これは、船体の総トン数が、漁獲能力の大きさという意味で基本的なものであることを踏まえ、漁獲能力の大きさを制限する指定漁業の趣旨から許可に係らしめているものである。

しかしながら、漁船の省エネルギー化を図るためのバルブスパウの大型化等では、許可上限トン数の増加が困難な場合、船上の他の空間を演じ、当該部分のトン数にあたる等非効率な作業がおこなわれていた例もあった。

このような事態に対し、水産庁内で漁船の大型化に係る取り扱いに関して議論が進められ、①復原性向上による漁船の安全性を図るための大型化、②省エネルギー化を図るためのバルブスパウによる大型化については、漁獲能力に直接影響しないと考えられる。漁船の安全性の向上と省エネルギー化は、漁業者の判断から平成24年の漁業許可の一斉更新と時期を合わせて漁業の復原性向上的ための漁船の大型化に関する取扱方針について（平成24年7月30日付け24水技第581号水産庁長官通知）を定めた。

これにより、漁船の復原性向上は省エネルギーを図るための大型化であって、所定の復原要件を満たすものである場合に限り、漁獲能力の増大に直接影響しない増加トン数について船舶の総トン数の増加限度を超えてこれを認めることが可能となった。

3.4 漁船の遭難時の対策：GMDSS（Global Maritime Distress and Safety System；海上における遭難及び安全の世界的な制度）

SOLAS条約附属書第IV章（無線通信）が昭和63年（1988年）に改正され、GMDSSが平成4年（1992年）から国際的に導入された。GMDSSは、船船に対し各種海上での安全情報を提供するため、平成21年船船に対し無線通信システムであるが、これによりモールス信号中心のシステムから無線電話中心のシステムに移行することとなった。

SOLAS条約附属書第IV章は漁船には非適用であるが、漁船では総トン数20トン以上の全船及び総トン数20トン未満であって本邦海岸から100海里を超えて運航する漁船に適用が拡大されている。

平成27年（2015年）現在、GMDSSは25年以上前の技術で構築されており、今日まで大きな改変は行われていなかったことから、機器の使用実態の変更や技術の更新を踏まえ、IMOにおいて見直し・近代化のための検討が進められており、平成30年（2018年）までに近代化計画を策定するスケジュールとなっている。

3.5 漁船から転落時の対策

平成26年の漁船からの中転落者インドジャケット着用・非着用の死亡率を比較するとライフジャケット非着用者の死亡率は、着用者の約3倍となっている（図7）。

こうした中、国土交通省は漁船職員及び小型船舶操縦者施行規則（昭和26年運輸省令）を改正し、平成20年4月1日から小型漁船に1人で乗船し、
漁船の安全性

3.6 漁船の安全性における今後の検討課題

前述の対策等により10年間と比較し、ほとんどの海難種別において要救助海難件数は減少している（図8）。

また、今後、ケープタウン条約が発効すれば、IMOにおける漁船の安全に関する議論が活発になり、更に漁船の安全性も向上していくものと考えられる。

一方、平成26年に運輸安全委員会からの情報提供において、船首方の視界が制限された漁船等の事故に対し再発防止策として、設計、建造等に際し、できる限り船首方の視界を確保することや操船方法等により制限された船首方の視界を補う措置を講じることが求められている。

資料：海上保安庁

図7 ライフジャケット着用・非着用の死亡率

漁船の海難事故の推移

図8 漁船の海難事故の推移

参考文献

1) Safety Recommendations for Decked Fishing Vessels of Less than 12 meters in Length and Undecked Fishing Vessels, IMO/ILO/FAO.
2) 平成23年度 次世代型漁船等調査検討委託事業 渔船関連国際条約等対応検討事業 漁船国際条約等検討事業 報告書 別冊。
3) 水産庁水産工学研究所、平成9年度受託研究「旋回船の複原性に関する実験的研究」報告書。
5) 運輸安全委員会「船首事故調査報告書（事故等名：ぱら藉物船NIKKEI TIGER 漁船大栄丸衝突事故）」。
6) 運輸安全委員会「膠着による船首事故防止に関する意見」。
7) 運輸安全委員会「船首事故調査報告書（事故等名：漁船第十一栄丸転覆）」。
8) 運輸安全委員会「航行中に船首方の視界が制限された船舶による衝突事故の防止に関する情報提供」。