第4回 操縦性シミュレーション

正会員 大森 拓也*

1. はじめに

本連載第4回では、操縦性能推定におけるCFDシミュレーションの現状を紹介する。基礎編では操縦性能推定手法におけるCFDの利用法とその現状を概説する。先端技術編では近年の研究トレンドと適用事例を紹介する。

なお、操縦性能分野におけるCFDの現状と最新動向を把握するために当用が2011年・2014年に開催されたSIMMANワークショップであるが、本稿執筆時点では2014年のペンチマーク計算結果まとめが発行されていないため、精度面の現状を把握限定の点はご参照いただきたい。

2. 基礎編

2.1 操縦性評価法とCFD

CFDについて述べる前に、まず操縦性の評価法について簡単にまとめておく。操縦性の評価は旋回径やジャグ試験のオーバーシュート角等の操縦性指標で行われるが、これらの指標は連続の操縦運動を行わせた時の航跡あるいは方位角等から得られる。従って操縦を推定する必要があるが、これには大きく二つの方法があり、一つは船体の運動方程式を数値的に解いて操縦運動を得る「操縦運動シミュレーション」、もう一つは無線操縦またはプログラム航走する模型船を操縦運動を行わせて直接航跡等を得る「自由航走模型試験」である。

操縦運動シミュレーションについてさらに詳しくみると、船体の剛体運動方程式（通常は水平面内の3自由度）を解いて運動を得るが、その外力の推定が問題となる。以下、広く使われているMMGモードを例にとってみると、まず外力の構成要素は船体流体力・舵力・プロペラ推力およびそれらの干渉成分の和になる。そして時々刻々の運動状況に応じた流体力を与える必要があるが、3自由度で漸近的に近い状況においては前進速度・横流れ速度・回頭角速度の3パラメータ（前進速度で無次元化するため実際には残りの2パラメータ）により表せるとして多項式近似により船体流体力を表現する。従ってそれらの係数（流体力係数）を求めることが操縦性推定の必要条件となる。模型試験を用いる場合は、PMM（Planar Motion Mechanism）試験やCMT（Circular Motion Test）といった拘束模型試験によってこれら係数を求めが、実験に代えてデータベースや3次元近似、細長船舶理論等で推定しようという努力が昔から行われてきた。

ここでCFDの適用を考えると、一つのアプローチが考えられる。一つは操縦運動シミュレーションにおける拘束模型試験の部分をCFDにおきかえて流体力を得るために使うというもの。もう一つは自由航走試験をCFDにおきかえて直接操縦性指標を得ようというものである。以下ではその二つの方法について現状を紹介する。

2.2 拘束模型試験のCFDシミュレーション

前述のように、拘束模型試験を代替する推定手法は各種研究されてきたが、斜航・旋回等は大規模な実験が発生するため、非定常の計算では精度向上に限界があった。また詳細な分野や時間帯等の仮定を導入することもあり、CFD粘性計算を使用するメリット是非常に大きいといえる。

多く使われる拘束模型試験法としてはPMM試験とCMTがある。PMM試験は長水槽で行えるため実験では良く使われるが、非定常試験であり推定計算に長時間が必要となるため、CFDの適用は遅れている。一方のCMTは定常試験であるため、1990年代の大森らを皮切りに早くから適用が進んできた。以下ではCMTのCFD計算手法について紹介する。

まず座標系であるが、姿勢変化を考えない場合は船体固定座標系で計算することが効率的である。ただし船回りを伴う場合は抵抗推進の場合と異なり慣性系ではなく、プロペラ計算に同様に回転中心でコリオリ力等の要因を加えた外力を導入する必要がある。計算領域は、左右対称流れであることや流れの方向性を考慮して、図1のように左右両方で幅広いものとすることが多い。格子解像度は抵抗・推進と同程度が一般的であるが、流れ帯が船体からや
や離れた位置に存在するため、船首側離渦の中心をカバーする範囲まではそれなりの格子密度確保が望ましい。

境界条件については見かけの外力との整合をはかる必要がある他は抵抗・推進と同じである。実用的には、低速で発進では自由表面を無視して鏡像条件を課す場合が多いと思われる。亂流モデルについては、操作特性に特化したチューニング等は通常行われず、抵抗・推進の場合と同じ k-ω SST 等が用いられているのが普通である。

図2に流体力微係数推定結果の例を示す。値が小さく精度確保が難しい前後力（図中のX）で実験値との差がやや大きいが、主要な微係数は高い精度で推定できていることがわかる。

舵とプロペラについては、主軸ののみで流体力を求める場合と装着して干渉成分まで含めて求める場合がある。装着する場合は、舵はその形状を格子で再現しプロペラは無限翼数モデル等の体積力モデルを用いることが多い。

2.3 自由航走試験の CFD シミュレーション

自由航走試験は拘束模型試験のように大がかりな水槽設備が必要としないため広く行われているが、

CFD 計算となると、船が10 船長オーダーの距離を進むに相当する長時間のシミュレーションが必要となること、操船を伴うこと、最も肝要となる舵力が船体・プロペラの後流影響を複雑に受けること等の理由により高難度となる。

自由航走試験の CFD 計算を行う場合、前節で述べたような舵・プロペラ・船体複合の CFD 計算に運動方程式、操舵機能、プロペラ回転数制御の機能を付加すれば可能となる。操舵は計算対象の形状変化を伴い長年のネックであったが、近年の重合格子法の発達により比較的少ない負荷で実現可能となっている。

とはいえこのような高負荷の計算はまだ一般的ではなく、先端技術との境界はあいまいである。図3にMofidiらによりジグザグ試験の CFD シミュレーションにおけるある瞬間の流場を示す。プロペラの各翼形状まで考慮した詳細な計算を行っている。
2.4 CFD シミュレーションの精度

基礎編のまとめとして、SIMMAN 2014 ワークショップにおけるペンチマーク計算結果の暫定的報告の一例を示す。図 4 は旋回径シミュレーション結果で、最上段「CFD」ブロックが自由航走 CFD による直接シミュレーション、3 段目「PMM」ブロックが PMM 計算の CFD シミュレーション結果から操縦シミュレーションを行ったもの、最下段「FREE」ブロックが水槽の自由航走試験結果である。棒グラフはそれぞれ異なる機関による結果を示す。

自由航走 CFD の 2 件は大きく異なる結果となっている。また CFD による PMM 推定に基づく 5 件も実験値より 10% 程度小さいものから 20% 以上大きいものが大きくばらついている。CFD による CMT 推定に基づく結果が今回はなかったが、他の公表事例から推測すると、計算ノウハウの蓄積や定常問題であること等の理由により PMM の場合より小さくばらつきになると考えられる。

3. 先端技術編

3.1 舵・プロペラモデルの高度化

先に述べたようにプロペラはモデル化して考慮されるのが一般的であるが、翼形状を再現した精密モデルによる計算も欧米を中心に盛んに研究が行われている。ただし現状では格子や時間刻みの解像度不十分等の課題が残っているようで、必ずしも無限翼数モデルより精度が向上するには至っていない。

より現実的な問題として、マリンナでにおけるラダーボーの扱いがある。福井はベース舵として近似した場合とラダーボーを考慮した場合の舵力を比較し、ラダーボー形状の考慮により接線力の舵角に対する変化傾向を捉えられることを示した。

3.2 航走姿勢の考慮

ヒール等の航走姿勢考慮はヨット等では以前から行われていたが、SIMMAN 2014 ワークショップを契機として、旋回時の横傾斜角が操縦性能に影響を与えることが再認識された。日本船舶海洋工学会の「船舶操縦運動予測モデルの高度化に関する研究委員会」において、福井らは横傾斜角を考慮した CMT の CFD シミュレーションを行い、着力点が
3.3 制限水域
1998年 MANワークショップを契機に制限水域での操縦流体力推定にCFDが適用されるよう、近年までは浅水域をはじめとして、狭水路やバンクエフェクト等の適用事例がある。問題が複雑・非線形であることをCFDに適したテーマであるといえる。図7にDenehyらの計算例を示すが、横力の時間変化は実験結果とよく一致している。この分野は河川交通の盛んなヨーロッパで精力的に研究されており、日本では低調なのが現状である。

図7 狭水路に停泊する船の横を通過する船の計算例 [1]
（上:配置、下:船体横力、マークは実験値）

4. おわりに
本連載の第4回では、操縦性に関するCFDシミュレーションの現状等を紹介した。
次回は「耐航性シミュレーション」についてレビューと解説が提供される予定である。

参考文献
1）http://www.simman2014.dk
2）第3回操縦性シンポジウムテキスト、日本造船学会、1981。
3）大森拓也、肥大船の操縦特性に関する研究（第二報定常旋回中の船体流体力と圧力分布）、日本造船学会論文集、第179号、pp.125-138、1997。
4）ITTC Guideline on Use of RANS Tools for Maneuvering Prediction、7.5-03-04-01、2011。
5）坂本信治、Zig-zag Simulations of KVLCC2 by CFD-Systems Based Maneuvering Prediction Method、日本造船海洋工学会講演会論文集第19号、pp.227-230、2014。
6）Mofidi、A. et al.、Simulations of Zigzag Maneuvers for a container ship with direct moving rudder and propeller、Computational Fluids、Vol. 96、pp.191-203、2014。
8）福本洋、CFDを用いた操縦運動時の舵干渉影響の研究、日本船舶海洋工学会講演会論文集第14号、pp.471-474、2012。
9）P-34 船舶操縦性予測モデルの高度化に関する研究委員会報告書、日本船舶海洋工学会、2014。
10）Denehy、S. P. et al.、Channel Width Effects on Berthed Ship-Passing Ship Interaction from Experiments and CFD Predictions、MARSIM2015、Newcastle、United Kingdom、Sep. 2015。