Influenza Virus Isolated in Thailand and Manila during the Period of August, 1979-August, 1981

Yukio YAMAZI, Yasuhiro SHIMIZU
Department of Microbiology and Immunology,
Nippon Medical School Tokyo
Yasue TAKEUCHI
Division of Virus and Rickettsia, National Institute
of Health, Tokyo
Kiyoaki SATSUTA, Masakazu TAKAHASHI, Izumi YOSHIKAWA,
Masanori NAGATA
Department of Hygiene and Public Health,
Nippon Medical School, Tokyo
Kampol PANASAMPOL, Vicharn VITHAYASAI, Jiraporn SUPAWADEE
Department of Microbiology, Faculty of Medicine, Chiang
Mai University, Chiang Mai
Boonyong PONGPROTE, Somboon SUPRASERT
Department of Preventive and Community Medicine, Faculty
of Medicine, Chiang Mai University, Chiang Mai
Damri DAMRONSAK
Department of Pediatrics, Faculty of Medicine, Chiang Mai
University, Chiang Mai
Prasong TUCHINDA, Sombodhi BUKKAVESA
Department of Pediatrics, Siriraj Hospital,
Mahidol University, Bangkok
Prasert THONGCHAROEN
Department of Virology, Siriraj Hospital,
Mahidol University, Bangkok
Kanai CHATIYANONDA
Virus Research Institute, Ministry of Public Health, Bangkok

(Received 10 June 1982/Accepted 14 September 1982)

Key words: Influenza virus, Thailand, Infection South-East Asia, Epidemiology

Summary

One hundred and thirty-six strains of influenza viruses isolated from patients in Thailand and Manila during the period of August, 1979-August, 1981 were studied by hemagglutination inhibition reaction with postinfection ferret sera. The Hong Kong subtype (H3N2) was prevalent in Thailand and Manila in the rainy season of 1980, while the USSR subtype (H1N1) was prevalent in Thailand in 1981. A/USSR/92/77- and A/Brazil/11/78-like viruses (H1N1) seemed to have circulated for longer period than in Japan.
Two strains of a new variant of Hong Kong subtype (H3N2), A/Kyoto/C-1/81-like virus, were first isolated in Bangkok in August, 1980. These variant strains of H3N2 were again isolated in Bangkok in January and August of 1981. Twelve strains of type B virus, isolated in Thailand and in Manila since May, 1980 were similar to those isolated in Japan during the same period, and the isolation of a new variant, B/Shiga/75/81-like virus, in Thailand was about 6 months after the isolation in Japan.

Introduction

It is difficult to explain the epidemic behavior of influenza on a simple model, like that of measles. The main features giving rise to epidemiological difficulties are (1) seasonal occurrence, (2) antigenic drift of virus, (3) antigenic shift of virus, and (4) world-wide distribution of influenza at all inhabited areas, in all climates, and in persons of all ages. Seasonal occurrence, so regular and familiar that it tends to be taken for granted, can be followed on a global scale in successive issues of the Weekly Epidemiological Record of the World Health Organization, in which influenza epidemics appear to be travelling to and fro across the world almost annually. Season rather than climate is their determinant as shown by seasonal epidemics of influenza in the temperate zones during the winter seasons and in the tropics during the rainy seasons of monsoons. In the latter zone, the mean monthly temperature and sometimes humidity may vary only a little throughout the year. One hypothesis, dealing with the epidemiology of influenza virus, proposes the temperate epidemic zone and the tropical virus-reservoir zone. Japan may be included in the former, while South-East (SE) Asia and the Tropical Western Pacific in the latter. This hypothesis is seemingly supported by the following facts: (1) the yearly occurrence of influenza alternates between these two zones (mainly in November-April in Japan, and April-November in SE Asia and the Tropical Western Pacific); (2) in SE Asia, the number of reported cases does not fall much from the rainy season (June-October) to the dry season (December-April); (3) some variants of the virus have been isolated in SE Asia and the Philippines several months prior to their isolation in Japan.

Influenza is, however, ubiquitous on the earth. In the late 20th century when the transportation system has been greatly developed, it would be myopic to visualize influenza virus movement as occurring only between Japan and SE Asia as well as the Tropical Western Pacific. The routes by which the virus can enter either area are multiple. In addition, Hope-Simpson presented a hypothesis from the household surveylance in England that the initiating factor of influenza A epidemics is an activation of the latent virus in humans, though any direct evidence of the latent virus was not presented.

Thus, it is important to be aware of the kinds of isolates that are isolated throughout SE Asia, the Tropical Western Pacific and Japan so that hopefully some epidemiological and virological inferences can be drawn. In this study, 136 strains of influenza virus fror patients in Thailand and Manila during the period of August, 1979-August 1981 were evaluated by HI test.

Materials and Methods

The Society for Medical Research in South-East Asia, Nippon Medical School, Tokyo, dispatched research teams to Thailand in August 1979, May and August 1980, December 1980-January 1981, and August 1981, and to Manila in May and August 1980 and January 1981. They collected 996 throat swab specimens from patients suspected of having influenza through the cooperation of the Faculty of Medicine, Chiang Mai University, the Siriraj Hospital, Mahidol University, and the Virus Research Institute, Bangkok, and the San Lazaro Hospital, Manila. The specimens were placed in nutrient broth and kept at -70°C on dry ice before being inoculated into developing hens' eggs in the laboratories of Nippon Medical School, and of the National Institute of Health, Tokyo.

Isolation of virus was performed with the amniotic inoculation of 0.2ml of the clinical specimen into 10 days old eggs, and the HI tests with chicken erythrocytes were performed after 2 or less passages through the eggs. Reference, postinfection, ferret antisera were raised against the following strains: A/USSR/92/77, A/Brazil/11/78, A/Kumamoto/37/79, A/England/403/80, and A/Fukuoka/C-1/81 of H1N1; A/Kumamoto/22/76, A/Tokyo/1/77, A/Bangkok/1/79, A/Aichi/1/80, A/Bangkok/137/80, A/Bangkok/211/81, A/Kyoto/C-1/81, and A/Niigata/102/81 of H3N2; and B/Kanagawa/3/76, B/Sin-
Table 1 Isolation of influenza viruses in
Thailand and in Manila, August 1979-
August 1981

<table>
<thead>
<tr>
<th>Date of collecting specimens</th>
<th>Areas</th>
<th>Viruses</th>
<th>AH1</th>
<th>AH3</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug. 20-23, 79</td>
<td>Chiang Mai</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aug. -Sep. 79</td>
<td>Bangkok</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>May 13-20, 80</td>
<td>Chiang Mai</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>May 11-20, 80</td>
<td>Sakaeo</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>May 11-22, 80</td>
<td>Bangkok</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>May 27-30, 80</td>
<td>Manila</td>
<td>0</td>
<td>12</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>June-Aug. 80</td>
<td>Bangkok</td>
<td>0</td>
<td>25</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Aug. 18-22, 80</td>
<td>Chiang Mai</td>
<td>0</td>
<td>14</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Aug. -Sep. 80</td>
<td>Bangkok</td>
<td>0</td>
<td>17</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Oct. 80</td>
<td>Bangkok</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Jan. '81</td>
<td>Bangkok</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>June-Aug. '81</td>
<td>Bangkok</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Aug. 17-25, '81</td>
<td>Chiang Mai</td>
<td>15</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>40</td>
<td>84</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>136</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Virus strains comprised 78 isolated in Japanese laboratories from 996 throat swabs, and 58 isolated in the Siriraj Hospital and the Virus Research Institute, Bangkok.

Results

Isolation of viruses. The virus strains isolated in this study are listed in Table 1. It is comprised of 40 strains of H1N1, 84 of H3N2 and 12 of type B virus. H3N2 seemed to prevail during the rainy season of 1980, and H1N1 during the rainy season of 1981.

H1N1 viruses isolated in Thailand. Forty strains of H1N1 virus were isolated in Thailand during the period of August, 1979-August, 1981. The H1N1 virus was not obtained from Manila. Antigenic properties of the 40 strains as determined with HI tests are summarized in Table 2. All 6 of the 1979 isolates were A/USSR/92/77-like viruses. Five out of 6 of the May, 1980 isolates were related to the A/Brazil/11/78 virus, while the sixth was not similar to any of the reference viruses. Three out of 13 isolates from Bangkok in 1981 were similar to A/Brazil/11/78, while the other 10 were intermediate between the Brazil-variant and A/England/403/80. Nine out of 15 strains isolated from Chiang Mai in August, 1981 were similar to the Brazil-variant, 5 were intermediate between Brazil and England-variants, and one was similar to the A/England/403/80. This data suggests that in Thailand the antigenic properties of H1N1 viruses drifted from USSR-like variant, through the Brazil-like variant, to the England-like variant during the period of August, 1979-August, 1981.

H3N2 viruses isolated in Thailand and in Manila. Eighty-four strains of H3N2 virus were isolated during the period of August, 1979-August, 1981, Table 3 summarizes the antigenic properties of 75 of these isolates studied with HI reactions. Two strains isolated in Chiang Mai in August, 1979 were similar to A/Tokyo/1/77 (equivalent to A/Texas/1/77), while 2 strains isolated in Bangkok in 1979 were A/Bangkok/1/79 and 2/79. Among 67 strains isolated from Thailand and Manila during the period of...
Table 2 Antigenic properties of AH1 viruses isolated in Thailand.
August 1979-August 1981

<table>
<thead>
<tr>
<th>Month of collecting specimens</th>
<th>Areas</th>
<th>Antigenic similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>USSR<sup>a</sup></td>
</tr>
<tr>
<td>Aug. 79</td>
<td>Chiang Mai</td>
<td>6</td>
</tr>
<tr>
<td>May ’80</td>
<td>Thailand</td>
<td>0</td>
</tr>
<tr>
<td>Jan. ’81</td>
<td>Bangkok</td>
<td>0</td>
</tr>
<tr>
<td>June-Aug. ’81</td>
<td>Bangkok</td>
<td>0</td>
</tr>
<tr>
<td>Aug. 81</td>
<td>Chiang Mai</td>
<td>0</td>
</tr>
</tbody>
</table>

^a A/USSR/92/77. ^b A/Brazil/11/78. ^c A/England/403/80.

Table 3 Antigenic properties of AH3 viruses isolated in Thailand and Manila. August 1979-August 1981

<table>
<thead>
<tr>
<th>Month of collecting specimens</th>
<th>Areas</th>
<th>Antigenic similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Tokyo<sup>a</sup></td>
</tr>
<tr>
<td>Aug. -Sep. 79</td>
<td>Thailand</td>
<td>2</td>
</tr>
<tr>
<td>May-Aug. ’80</td>
<td>Thailand and Manila</td>
<td>16</td>
</tr>
<tr>
<td>Oct. 80-Jan. ’81</td>
<td>Bangkok</td>
<td>0</td>
</tr>
<tr>
<td>Aug. ’81</td>
<td>Bangkok</td>
<td>0</td>
</tr>
</tbody>
</table>

^a A/Tokyo/1/77. ^b A/Bangkok/1/79. ^c A/Kyoto/C-1/81.

May-August, 1980, 16 were similar to A/Tokyo/1/77, 29 were intermediate between A/Tokyo/1/77 and A/Bangkok/1/79, and 14 were similar to A/Bangkok/1/79. However, the other 8 strains were different from both of these reference viruses. Two strains isolated in October, 1980 were A/Bangkok/1/79-like viruses. Both of 2 strains isolated in January and August 1981 were different from both A/Tokyo/1/77 and A/Bangkok/1/79.

Type B influenza viruses isolated in Thailand and Manila. Twelve strains of type B virus were isolated after May, 1980 in this study, and 5 out of 12 were from Chiang Mai in August, 1981. All of the 12 strains were similar to either B/Kanagawa/3/76, B/Singapore/222/79, or B/Shiga/75/81. B/Shiga/75/81-like virus was isolated in Bangkok in August, 1981.

Discussion

In order to study prevailing viruses in SE Asia and the Tropical Western Pacific, and to know their relationship to Japanese isolates, we tested 136 influenza virus strains isolated from patients in Thailand and Manila during the period of August, 1979, to August, 1981. Hemagglutination inhibition (HI) reactions were determined, using post-infection ferret antisera, which had been raised to a number of reference strains.

In August, 1979, both of H1N1 and H3N2 viruses were isolated in Chiang Mai. During the period of October, 1978-September, 1979, the H3N2 virus was isolated only in a few countries in the world¹³, and it was not reported in Japan¹³. Isolation of H3N2 virus in Chiang Mai, and in Bangkok in August-September, 1979, is evidence of the smouldering of the subtype in Thailand.

H3N2 virus was prevalent in both Thailand and Manila in the rainy season of 1980, and H1N1 was prevalent in Thailand in the rainy season of 1981. In Japan, the influenza virus isolates were: H1N1 1420, H3N2 619 and B 279 in the winter of 1979-1980; and H1N1 718, H3N2 150, and B 232 in the winter of 1980-1981¹⁴; and B was prevailing in 1981-1982. In USA, the influenza virus isolates were H1N1 24, H3N2 0, and B 1334 in the winter of 1979; and H3N2 was more prevalent than H1N1 in the winter of 1980-1981¹⁵. Thus, different subtypes or types prevailed in the different parts of the world. However, the prevalence of a particular subtype or type was much greater in Thailand and in USA than in Japan.
This might reflect the difference of the vaccination policy. In Thailand, the vaccine is not given, and
in the USA, it is recommended only to high risk groups. But in Japan, more than 50% of school
children are immunized with trivalent (H1N1, H3N2, and B) vaccine. The immunity of people is a major factor
in both of the direct spread-hypothesis and the latent virus-hypothesis of influenza epidemics, as far as
the selection of the prevailing virus concerns. If we have a casual speculation, development and spread
of the prevailing virus may be inhibited by the level of immunity in school children, and any particular
subtype or type of virus may not become exclusively prevalent in Japan. But in Thailand and USA,
different subtype and type could prevail alternately in the successive year without the interference by
the level of immunities raised by the large scale administration of the trivalent vaccine, where the
immunity has been mainly acquired with the natural infection the year before.

In Japan, most H1N1 isolated in the winter of 1979-1980, and of 1980-1981, were similar to A/Brazil/
11/78 or A/Kumamoto/37/79. Only the A/Fukuoka/C-1/81-like viruses, which have drifted more than
A/England/403/80, were found after December, 1981. The H1N1 viruses isolated from Thailand in 1979
were the USSR-like viruses, 2 (from Sakaeo) out of 6 strains in 1980 were related to the USSR-variant,
and 9 out of 15 isolates from Chiang Mai in 1981 were the Brazil-variants. These results suggest that the
old USSR-variant and the Brazil-variant survived and circulated for a longer period in Thailand than
in Japan. Studies of the recombinant H1N1 viruses that had received genes from the H3N2 variant are
not included in this report.

Isolation of antigenically drifted strains of H3N2 viruses in Thailand and Manila seemed more
frequent than in case of H1N1. In addition, the study of H3N2 viruses isolated in Thailand gave this
interesting result: that 2 strains of a new variant of A/Kyoto/C-1/81-like virus appeared at Bangkok
in August, 1980, 6 months prior to the isolation in Japan, and the variant viruses were again isolated in
that city in January and August, 1981. Details of this story will be described in further reports. It is
not known, however, whether the new variant strains developed independently in Thailand and in Japan
according to the latent virus-hypothesis, or traveled to and fro in the areas including SE Asia and Japan
by the direct spread among people.

All of the 12 sprains of type B virus isolated from Thailand and Manila since May, 1980 were not
different from the viruses isolated in Japan during the same period. Isolation of the type B virus was
frequent in Chiang Mai in the late stage of this study, because 25% of influenza virus strains in the area
in August, 1981 were type B. One strain from Bangkok in August, 1981 was similar to the new variant,
B/Shiga/75/81 which was first isolated in Japan in the early winter of 1981. Thus, the variant appeared
in Japan prior to the isolation in Thailand.

Both of the new variants, A/Kyoto/C-1/81- and B/Shiga/75/81-like viruses, were isolated from
Bangkok, but not from Chiang Mai. This might suggest a difference between Bangkok and Chiang Mai,
as far as the apparent circulation of new variants in SE Asia and Japan concerns.

This study was supported in part by research grants from the Ministry of Education, Tokyo, #504164
in 1980 and #56043057 in 1981; from the International Medical Foundation of Japan, Tokyo in 1979-1981;
and from the Society for the Medical Research in South-East Asia, Nippon Medical School, Tokyo in
1979-1981. Please address request for reprints to Dr. Yukio Yamazi, Dept. of Microbiol. and Immunol.,
Nippon Medical School, 1-1 Sendagi, Bunkyo-ku, Tokyo, Japan 113.

References
1) Takahashi, M., Takeuchi, Y., Yoshikawa, I., Shimizu, Y., Satsuta, K., Noriki, H. & Yamazi, Y.: Influenza
2) Fukumi, H.: Ecological analysis of the epidemics, In Noriki and Kaji (ed), "Advances of Influenza Research:
101–105.

8) Yamazi, Y. & Yoshida, K.: "Testbook of Laboratory Works of Microbiology and Immunology", Igaku Shuppan Sha, Tokyo, 1979, p. 120–123.

15) Kendal, A. P.: Personal communication to the NIH, Tokyo, 1981.

1979年8月～1981年8月にタイ国および
マニラで分離されたインフルエンザウイルス

日本医科大学微生物学免疫学教室
山地 幸雄 清水 康弘
国立予防衛生研究所ウイルス・リケッチア部
武 内 安 恵

日本医科大学衛生学公衆衛生学教室
藤田 清明 高橋 修和 吉川 泉 長田 正憲

チャムマイ大学医学部医学部医学教室
カンボール・パナスアンボール
ウイチャヤ・ウイチャヤセイ
ジラボン・スパワディ

チャムマイ大学医学部医学部医学社会医学教室
ブニョン・ポンプローテ ソンブン・スプラサート

チャムマイ大学医学部小児科
ダムリ・ダムロンサク
マヒドル大学シリラ病院小児科
ブラソング・ツチンダー ソンポ・プカベサ
マヒドル大学シリラ病院ウイルス学教室
ブラサート・トンチャロエン
タイ公衆衛生省ウイルス研究所
カナイ・チャタイアノンダ
（昭和57年6月10日受付）
（昭和57年9月1日受理）

1979年8月から1981年8月までにタイ国およびマニラの患者から分離された136株のインフルエンザウイルスの抗原分析を、感染フェレット血清を用いるHI試験により行なった。1980年の雨季のタイおよびマニラでは、主にH3N2が流行し、1981年のタイでは、主にH1N1が流行した。A/USSR/92/77およびA/Brazil/11/78株ウイルスは、タイでは日本より長期間生存した。N3N2の新しい変異ウイルス、A/京都/C-1/81株ウイルスは、日本より6ヶ月先立って、1980年8月にバンコックではじめて分離され、1981年1月および8月に再びバンコックで分離された。B型は、1980年以降にタイ国およびマニラで分離され、それらは同じ時期の日本分離株と同様であり、新しい変異ウイルス、B/志賀/75/81株ウイルスは、タイ国では日本より約6ヶ月おくれて分離された。