Significance of Introducing "Ecosystem-Based Disaster Risk Reduction" in Elementary Education. 1. Case Study: Science, Grade 6, "Living Things and the Environment"

Abstract

This study aims to reveal the significance of Eco-DRR in education. Japan is prone to natural disasters and the importance of disaster education has increased after the Great East Japan Earthquake. Japanese children need to be aware of disaster prevention, and learning about Eco-DRR would therefore prove to be beneficial. It is important that students learn how to avoid exposure during natural disasters and realize the vulnerability of the area in which they live. We propose that Eco-DRR be introduced as teaching material in the 6th grade at elementary school under the topic "Living Things and the Environment."

1 問題の所在

日本の国土は複数のプレート境界を有する島弧列島で、南北約3,000kmにわたる数千の島々から成る（小池, 2005ほか）。海岸から山岳までの直線的な距離が短いにもかかわらず、標高差が大きく、そのため傾斜が大きい急流河川を作り出している（式, 1994）。また、世界の大規模地震の約2割が発生するという世界有数の地震国であり、さらに世界の活火山の約1割が存在するという世界有数の火山国でもある（藤塚・松田・中村，1980など）。上記の意味で世界的的にも自然災害リスクの高い国の1つであると言わざるを得ない。さらに近年の異常気象が加わったことで、以前はフィリピン近海で発生していた台風が、日本の近海で発生するようになった。2016年9月には観測史上初めて東北地方に台風が直接上陸する事態に至っている。日本で生活するということは、このような自然災害と共存していかなければならない。その一方で、そういった活発な自然の変動が、複雑で多様な立地を作り出し、その立地の違いに対応する形で世界的にも稀有で豊かな生物相を成立させている（那須, 1977；亀井・ウルム氷期以降の生物地理総研グループ, 1981；小笠原・植村, 2006など）。

上述したような日本の豊かな生物多様性を積極的に生かした防災・減災の考え方としてEco-DRRが注目を集めている。Eco-DRRは、安全で豊かなる生活を営むための人と自然との関係を再構築する考え方を示したもので、Ecosystem-based Disaster Risk Reductionの略称である。健全な生態系が有する防災・減災機能を積極的に活用して災害リスクを低減させるという考え方である。国際的にも、生態系が持つさまざまな機能を社会づくりに積極的に活用する取り組みとして広がりをみせており、日本でも環境省自然環境局などが普及啓発に努めている（環境省自然環境局, 2016）。

本研究では、教育方法学の視点からEco-DRRの考え方を、小学第6学年B「生命と地球」領域の「生物と環境」の単元に導入したときの教材としての可能性を検討する。なお本稿は第66回日本理科教育学会（信州大学）で報告した内容に加筆したものである。
2 防災教育に新たな視点を加えるEco-DRRの教育的意義

2.1 東日本大震災が教育方法学に与えた影響

2011年3月11日午後2時46分、三陸沖東の地下でM9.0の地震が発生した。まず最大震度7の揺れによって、建物の崩壊と崖崩れや道路の破壊寸断が発生した。その後、史上最大規模の巨大津波が、東日本の太平洋沿岸に押し寄せた。岩手県から宮城県にいたリアス式海岸では地形の影響もあり、最大39mにも及ぶ津波となった。広い範囲で被害が発生し、多くの人命が失われたほか、家屋や建物が流出した。さらに巨大津波がきっかけとなって発生した原発事故は1986年のチェルノブイリ事故に並ぶ災害となった。自然災害を前にしてこのような状況下、あるいは再興に向けた取り組みが進められている中で、児童生徒は学習を続けている。東日本大震災を乗り越えるための教育方法が求められている。梅原（2014）は、東日本大震災後の教育方法学の課題として次の3点を指摘している。

第1点は防災教育である。日本列島をプレートテクトニクスの視点から把握し、地震が起きるしくみと発生可能性、起きたとしても甚大な被害を防ぐ方法について学ぶことが重要である。その過程で過去の災害体験を学習の対象にする必要があるということ。

第2点は避難教育である。これは今まで大きく取り上げられてこなかった教育である。実際に被害が出たことを想定して、災害からの「生きのびる」術と方法を学ぶことが目標とされる。避難についての教育とは、避難を選ぶ災害から命を守るために安全な場所まで逃げることができるようになることであり、非常時における避難所での共同生活（健康、食材、睡眠など）を実行できることであり、そのノウハウについて事前に学習し体得しておくことを指す教育ということができる。

第3点は復興教育である。これも東日本大震災以前には大きく取り上げられてこなかった。復興では、破壊された道路・家屋・建物やライフラインの復活など地域再建、産業の再建と就労の確保、医療・福祉・衣食住などの生活システムの確立、文化祭り、行事の復活などがあり、児童生徒の立場から、その意義をどうか可能な場面では参加することを求める教育となる。

2.2 Eco-DRRの枠組み

Eco-DRRでは、自然災害の規模そのものは人類の最先端の科学技術を用いてもコントロールすることはできないという前提で出発する。規模や発生時期など現在の科学では予想できないからである。東日本大震災を引き起こした2011年東北地方太平洋沖地震の規模を縮小させることはできないし、あるいは2014年に発生した広島県の集中豪雨を制御することはできないのである。

そこで自然災害のリスクを小さくするために私たち人類がコントロールできるのは、暴露と脆弱性の2つということになる。暴露とは自然災害にさらされる部分を指し、Eco-DRRとしては自然災害の被害を受けやすい地域から離れること、近づかないということになる。東日本大震災による津波被害でいえば、まさに高台移転が該当する。また2014年の広島土砂災害を例にすれば、自然災害の被害を受けにくい立地への移動を意味する。脆弱性とは、人類が被害を受けにくくするためのインフラ整備などが該当する。これは科学技術を進歩させることで補強することができる。耐震補強技術が進歩すれば橋梁や建築構造物の被害を小さくできることを意味している。

Eco-DRRは様々な形が想定されるが、そのうちの1つを示したものが図1のEco-DRRにお
ける自然災害リスクの考え方、図2がEco-DRRの災害リスク軽減の枠組である（Asia Disaster Reduction Center, 2005）。図1が示すように自然災害のリスクをEco-DRRでは、自然災害の規模、ヒトの暴露状況、自然災害に対する脆弱性の3つの視点でとらえる。この3つの円が重なり合った部分が自然災害のリスクである。この重なり合った部分の面積を縮小させるための取り組みをEco-DRRは合理的に提案するための視点を提供する。

図1：Eco-DRRにおける災害リスクのとりえ方
（Asia Disaster Reduction Center, 2005をもとに筆者が加筆修正）

図2：Eco-DRRの枠組み（Asia Disaster Reduction Center, 2005をもとに筆者が加筆修正）

原（2009）は、阪神淡路大震災を例にして、日本における災害教育の重要性を指摘している。特に人間の生活空間の広がりや人口密度が高くなることで自然災害の発生可能性が高まることが問題であるとしている。「暴露」の視点で、生活空間の見直しをはかり、無理のない土地利用の意義を示すEco-DRRは災害教育に対して重要な意味を持つと言える。
2.3 教育方法学と Eco-DRR

Eco-DRR の考え方は、東日本大震災を経験し、人間の想定を超えた自然災害に対して、生態系の機能を最大限発揮させて防災という視点だけではなく、減災によって被害を減じていくことを具現化する考え方である。平成 25 年に成立した「強くしなやかな国民生活の実現を図るための防災・滅災等に資する国土強靱化基本法」とも整合する内容を持つ。津波を防ぐために、自然豊かな海浜の生態系の機能を最大限に生かし、減災、防災に活かす考え方を提供する。次節で扱う事例は耐塩性の高いクロマツを用いて防潮林を構築し、土木工事によって巨大な防潮堤を構築するのではなく、人類の叡智を駆使して、被害を小さくしていく方向性が示されることを学ぶ教材の例である。

次節では、この事例を Eco-DRR の視点を導入することによって、梅原（2014）が指摘した東日本大震災を経て教育方法学に求められる 3 つの課題、防災教育、避難教育、復興教育に対する教材として、一定の役割を果たす可能性にあることを示したい。生態系の機能を生かすことにより、脆弱性を縮小させ、災害からの暴露を縮小させることを学ぶ学習活動である。教育の力で災害の被害を縮小させるとともに被災後の復興につなげていくことを期待したい。

3 事例研究：小学校理科「生物と環境：防潮林の成立史」

3.1 景観の基盤としての植物群落

陸上に生育している植物の集団を植生と呼び、大地を覆うする植物の集まりというような意味合いで用いられている。特に生態学的基準によって類型化された植生を植物群落（あるいは植物群集）と呼称する。また時間的・空間的なスケールに応じて植物群落はさまざまな動態をみせる（大沢、1977, 2001）。植物群落とは相観や種組成でなんらかの均質さがあり、生態学的な類型化ができるような植物の集団である。Eco-DRR の視点からの教材化で次の 2 点が重要である。

1 つは植物群落が景観構造の基盤を成しているということである。景観とは、いくつかの群集や生態系が集まったものであるが、あらゆる生物のエネルギー基盤が植物の光合成による同化であり、あらゆる生物の生息場所を提供しているの植物である。上記の意味で、景観構造の特徴は、一義的に植物群落の特徴によって規定される部分が大きい。

もう 1 つは植物が固着性であるということである。基本的に対象物が移動しないことから、事前の予備調査で見られた対象は、一定範囲の時間内であれば、生徒が観察を行う場合にも存在し続けている。学習プログラムを編成する上で重要な視点である。物理実験や化学実験のような再現性は期待できないものの、予め準備した学習課題に対して、特別大きな環境変化がない限り、その学習を進めることができるという点は大きな利点である。仙台市周辺に限っても多様な植物群落が存在し、その植物群落が多様な景観を作り上げている（菅原・内藤、1980; 長島, 1988, 1996 など)。

3.2 カリキュラム構成の考え方

図 3 が Eco-DRR の視点を取り入れた小学 6 年「生物と環境」の地域教材の構想案を示している。筆者らは、今回そのうち仙台海浜域における防潮マツ林を Eco-DRR 教材としての可能性を次の 3 点から検討した。まず第 1 点として、人が植栽して成立した数少ない例であるということである。天然林のプナの伐採によって豪雪地帯にスギ林が植栽されたものの期待されたような生育が見られない事例や、高標高地にカラマツ林が植栽されたものの多数の個
体が枯死する事例など、植林には自然を破壊するというイメージがつきまとまる。その点で海浜域は海からの塩分の浸入で土壌が発達しにくく、放置していても植物が生育しにくい。浸透圧が高いため土壌から水を含め栄養塩類を植物が利用できないからである。そういった生産に不適な立地にあっても人の英知で、そういった数値地に適合するマツという樹種を選び出し植林に成功している。自然と人との良い関係を考える上で良い教材となりうる。

第２点として、仙台海浄域の防潮マツ林にはみられるクロマツやアカマツが、人との関わりの中で最も身近な樹種であるということである。生徒が通う学校においても必ず玄関などに植林されている樹種である。自分が見慣れている樹種が防災上大きな貢献をしていることに気付かせることができる。上原（1949）は、日本の風景の中でも海岸付近に見られるマツを中心とした林が必要な要素の1つであることを指摘しているが、特に仙台付近に見られるマツ林は自然林に見間違えるほどの植物景観を作り上げた場所（松本、1992）であり、生態学的にも貴重な林となっている（Hirabuki&Nagashima,2002；長島・撮影,2013）。

第３点は、植栽されたマツ林が、自然の遷移に従って、植栽時には想定していなかったより豊かな多様性の高い自然林に変化してきたという点（図４）である。長島ほか（2001,2002）は、鳥散布樹種が近郊の里山から実生を運ぶことで樹種構成が豊富になり、多様な自然環境が形成されつつあることを指摘した。人が植栽という形で防潮林の基礎を築き、時間の経過とともに、自然がさらにその防潮林を発達させている。このように自然と人とを対立軸として描くのではなく、生態系の機能を最大限発揮させることが、人にとって最も有益になる。Eco-DRR 教材としての防潮林の価値を扱う学習は、これからの「人と自然のあるべき姿のモデル」を示すことができる。

図３：Eco-DRR を取り入れたカリキュラム構成案
図4：仙台湾域における防潮マツ林の景観構造（長島・平吹, 2002 に加筆）

図5：「環境」領域の小学校・中学校理科系統図
4 Eco-DRR の視点による教材化の可能性と意義

図5は、「環境」領域の小学校・中学校理科システムを示している。小学校3年の理科で「身近な自然」を扱った後、小学校6年で「生物と環境」を学習するまでで、植物が人間に提供している恩恵を学ぶ単元が見当たらない。小学校4年の単元は季節と生物の関連を扱ったもので防災教育の視点を加えることは難しい。現状のカリキュラムでは中学3年次の「生物と環境」の単元において、生態系の基礎、自然界における物質の循環、自然と防災を直接的に学習することになる。その意味で防災教育という視点では中学3年次まで自然環境の観察や防災に果たす役割を全く扱わない状態となっている。

東日本大震災の教訓を生かすためには、小学校から中学までの義務教育段階でEco-DRRの視点による「人間が制御できない巨大な自然の力、あるときは恩恵をもたらし、またある時は破壊をもたらすこと」を学ぶ必要がある。図5が示すように現行のカリキュラムの中学校3年次のみの扱いでは十分とは言えない。東日本大震災を経て、教育方法学的に理科教育における防災教育の位置づけを再検討すべき時期に来ていることを指摘したい。

図6は、その打開策として提案する学年配当案である。本事例研究が小学校の最終学年で、自然環境の果たす役割を扱うことは、現行の理科カリキュラムにおける防災教育の欠落を補うという意味で、教育方法学上の意義があると考えられる。今後予想される首都直下型地震や南海トラフを原因とする南海巨大地震などの巨大災害（ニュートン編集部, 2011）を前提にして、被災地固有のカリキュラムや被災地固有の教育方法の開発が必要であり、今回の中学生はそれを結びつけた教育実践として位置づけることができよう。

参考文献

(1) Asia Disaster Reduction Center (2005) Natural Disaster Risk, Total Disaster Risk Management - Good Practices -, pp1-10
(2) 原芳生(2009) 災害教育を考える、「東京学芸大学地理学会シリーズ 2 身近な環境を調べる」pp124-129, 古今書院
(4) 貝塚崇平・松田時彦・中村一明 (1980) 日本列島の構造と地震・火山、「阪口豊編日本の
自然」pp.71-85, 岩波書店
(5) 亀井節夫・ウルム氷期以降の生物地理総研グループ（1981）最終氷期における日本列島
の動・植物相, 第四紀研究, 第 20 巻, 第 3 号, pp191-205
(6) 環境省自然環境局（2016）自然と人がよりそって災害に対応するという考え方, 24pp
(7) 小池一之（2005）日本列島の島々, 「日本の地誌 I 日本総論 1 (自然編)」, pp24-31, 朝
倉書店
(8) 松本秀明（1992）仙台湾岸の松林, 「仙台周辺エクスカーションガイド」, p26, 東北地理学
会
(9) 長島雄雄（1988）青葉山丘陵の雑木林 I, コナラ-クリ林に島状に残されたハンノキ林につ
いて, 東北の自然, 第 47 号, pp12-20
(10) 長島雄雄（1996）青葉山丘陵の雑木林III, 青葉山市有林における群落の類型化, 東北
植物研究, 第 9 号, pp3-10
(11) 長島雄雄・平吹雅彦（2002）景観スケールを重視した環境教育プログラムの開発, 1, 景
観スケールの有効性と防潮マツ林を事例とした学習プログラムの開発, 宮城教育大学環境
教育紀要, 第 5 巻, pp39-46
(12) 長島雄雄・平吹雅彦・長谷川巧（2002）老齢防潮林における島散布型常緑樹種稚樹の
定着様式, 日本植生学会第 7 回大会, A11 篇波大學
(13) 長島雄雄・横澤秀夫・平吹雅彦・大柳雄彦（2001）老齢防潮林への島散布樹種の侵入,
日本植生学会第 6 回大会, B07 岩手大学
(14) 長島雄雄・櫛留登子（2013）仙台湾域の老齢防潮クロマツ林に侵入する広葉樹の研究 2,
林冠ギャップと主要構成種の 8 年間の動態, 仙台市科学館研究報告, 第 22 号別冊, pp22-31
(15) 那須孝雄（1977）多彩な日本の生物相, 地学団体研究会編「日本の自然」, pp.15-18, 平
凡社,
(16) ニュートン編集部（2011）次にひかえる超巨大地震, 「ニュートンムック 次にひかえる
M9 超巨大地震」, pp52-91, ニュートンプレス
(17) 小笠原健四郎・植村和彦（2006）日本列島の生い立ちと動植物相の由来, 「国立科学博
物館編 日本列島の自然史」, pp.60-78, 東海大学出版会
(18) 大沢雅彦（1977）遷移とすみわけ, 植物生態学講座第 4 巻, 「植物群落の遷移とその機
構」, pp74-88, 朝倉書店
(19) 大沢雅彦（2001）植物群落とは何か, 「生態学からみた身近な植物群落の保護」, pp1-37,
講談社
(20) 式正英（1994）日本の地形の特色, 「日本の自然」, pp55-71, 放送大学教育振興会
(21) 菅原亜悦・内藤俊彦（1980）植物, 「快適な自然環境を求めて 宮城県環境管理計画
策定のための学術調査 2」（宮城県編）, pp 3-20, 宮城県
(22) 上尾敬二（1949）海洋風景, 「風景読本」, pp138-157, 晃書房
(23) 梅原利夫（2014）震災と教育, 「教育方法学ハンドブック」, pp430-433, 日本教育方法学
会