5. 肝硬変に対する肝移植－ウイルス性肝硬変を中心に

菅原 寧彦 幕内 雅敏

要 旨：2004年1月より生体肝移植の保険適応検査が大幅に拡大され、成人症例での肝移植の需要が増加している。特に、肝炎ウイルスを背景とした肝硬変症例の増加が著しい。肝炎症例では、術後のウイルス制御が大きな課題となっている。B型肝炎再感染対策においてはまず、移植前に、ラミブチンの内服を始める。血液中B型肝炎ウイルスDNAを陰性化させておくことが肝要である。術後の再感染予防は、抗B型肝炎ウイルス免疫グロブリンの多量投与とラミブチンの併用療法が標準治療となっている。一方、C型肝炎では問題点が多い。再発症例に対してはベクチンファレロンとリパビリンとの併用を行う。ただし、併用療法は副作用が強く、移植前投与は一般的でない。また持続陰性化が低いことから、術後投与や予防投与に関してはコンセプスが得られていない。

索引用語：ラミブチン ベクチンファレロン リパビリン B型肝炎 C型肝炎

はじめに

近年、生体肝移植の成人症例数の増加が著しい。本邦では原発性胆汁性肝硬変、胆管閉鎖性病児などの胆汁管靜脈性肝疾患が多かったが、近年では、保険適応の改正をうけて、ウイルス性肝硬変に対する症例が次第に増加している。非ウイルス性の疾患と同様な成績を期待するためには、保険の適正な対応や管理方法が重要である。本稿では、最近の主な論点となっている、B型肝炎（HBV）、C型肝炎（HCV）陽性症例の移植前後の管理方法及びその成績について、自験例と文献的な考察を中心に解説する。

I. HBV

1. 移植前処置

B型肝炎再感染対策においては、術前のHBV DNA値が術後の再感染率を決定する1)ことは古くから知られていた。HBV DNAは複製の際にRNA中间体を介して逆転写される。逆転写酵素阻害剤の一つであるラミブチンは、有用な抗HBV薬であり、末期肝硬変患者でも副作用が少ない。したがって、移植前にラミブチンの内服を始め、血液中HBVを陰性化させておくことは、術後の再感染予防において有利である。

ところが、ラミブチンは長期に服用すると変異株が出現し、いわゆるvirologic breakthroughを誘発する。一般的に「予想される」移植時期の6カ月前からのラミブチン開始が望ましい2)とされているが、脳死肝移植では実際にイットグラウトが入手できるか明確にわかっていないため、ラミブチンの適切な開始時期を決定することは困難である。本邦のように、脳死体からのグラフトが極めて出現しない状況では、ラミブチンを移植前に使用するかどうかの判断が特に難しいと思われる。

生体肝移植はほとんどの場合（急症肝炎以外）、待機的療法である。したがって、生体肝移植ではラミブチンを適切な期間投与することで変異株出現のリスクを低くすること、高い確率で血液中HBV DNAを陰性化させることが可能である。これは脳死肝移植では期待できない、大きな利点である。s抗体陽性のドナーからの移植では、レピエントはラミブチン投与だけで、s抗体が自然と陽性化する（adoptive immunity transfer）とするデータ3)もある。生体肝移植では、ドナーにあらかじめ能動免疫しておくことも可能である。その有用性に関しては今後のデータ集積が待たれる。

2. 移植後治療

免疫グロブリン（HBIG）を短期で中止するとやや軽い肝炎が再発することは古くから知られている4)。一方HBIGは高価であり、経済的な側面も無視できない、さらにその原料をヒト血液に依存しているため、供給が限界がある。このような背景から再発しない程度に、しかもHBIG使用量、コストを最小限に抑えるべく、さまざまな工夫が試みられてきた。術前のHBV DNAにより、たとえば陽性ならHBVs抗体値
肝移植の現況と今後の課題

Table 1 Response to hepatitis B virus vaccine in patients transplanted for HBV-related liver disease

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No of patients</td>
<td>22</td>
<td>5</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>Men : women</td>
<td>15 : 7</td>
<td>5 : 0</td>
<td>15 : 2</td>
<td>18 : 2</td>
</tr>
<tr>
<td>Age (median)</td>
<td>38*, 41**</td>
<td>NA</td>
<td>53</td>
<td>54</td>
</tr>
<tr>
<td>Acute : chronic</td>
<td>8 : 14</td>
<td>NA</td>
<td>0 / 17</td>
<td>2 / 18</td>
</tr>
<tr>
<td>Immunosuppression (mono : multi)</td>
<td>11 : 6</td>
<td>5 / 0</td>
<td>17 / 0</td>
<td>16 / 4</td>
</tr>
<tr>
<td>With HBIG</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Cut off HbsAb (IU/l)</td>
<td>10</td>
<td>10</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>of sero-conversion</td>
<td>64</td>
<td>80</td>
<td>18</td>
<td>—</td>
</tr>
<tr>
<td>> 100 IU/l (%)</td>
<td>24</td>
<td>NA</td>
<td>12</td>
<td>—</td>
</tr>
<tr>
<td>500 IU/l (%)</td>
<td>9</td>
<td>NA</td>
<td>6</td>
<td>80</td>
</tr>
<tr>
<td>Maximum HbsAb level</td>
<td>47</td>
<td>NA</td>
<td>258</td>
<td>25344</td>
</tr>
<tr>
<td>(median, IU/l) in responders</td>
<td>41</td>
<td>5.5</td>
<td>66</td>
<td>13.5</td>
</tr>
<tr>
<td>Observation period after vaccine (median, month)</td>
<td>33</td>
<td>> 20</td>
<td>48</td>
<td>78</td>
</tr>
</tbody>
</table>

*Responders **Nonresponders

(HbsAb) 500 IU/l, 区性なら10 IU/l といったように、状態によって使用量を変える試みも、あるいは最初の1年を併用しその後、ラミプジン単独で対処する方法も使用量を抑える方法の一つである。ラミプジンを併用すれば、さらに HBIG の使用量を抑える可能性がある。現在では、HBIG＋ラミプジンの併用が一般的である。

教室では、ラミプジン長期投与による、変異株出現のリスクを考慮し、術後は原則として、HBIG のみで管理している。術後1年は HBs 抗体価が 1000 IU/l 以上になるように、それ以降は 200 IU/l 程度になるように HBIG の投与量を決定している。術後1年1000 IU/l という抗体価設定は基準である。術後1年では1カ月あたり、約 6000 ~ 10000 IU、それ以降では2000 ~ 4000 IU の HBIG の投与が必要であった。2005年3月までのB型肝炎陽性、特記手術症例は35例で、うち1例に再発を認めたする。本邦においては、B型肝炎肝硬変に対する生体肝移植は保険適応になっているにもかかわらず、移植に当たって必須と考えられる HBIG が、保険適応されていない点が大きな問題となっている。

ラミプジン単独投与では30％程度の再発は覚悟しなくてはならない。この場合、YMDD 変異株に対しては、adefovir dipivoxil が有効であり、かつ adefovir の副作用も重篤なものではないのであるが、Adefovir は 2005 年から日本でも保険承認されているが、長期投与の結果については必ずしも明らかではない。

3. 能動免疫療法への期待

HBIG は経済的な問題が大きく、ラミプジン単独では変異株の出現を無視できない。近年は6カ月以上経過した患者に対する能動免疫の試みがなされている（Table 1）。Sanchez-Fueyo [10, 11]や Barcena [12]らは、通常の B 型肝炎ワクチンを意図投与することで、効率的に能動免疫を誘導するとしたが、ほとんどの症例では HBs 抗体価は10 IU/l 程度になる傾向がみられていた。近年、Bienzle [13]らはワクチンを改善することで、効率に高い HBs 抗体価を誘導できるとした。今後の症例の集積が待たれる。

II. HCV

1. 移植前診療

HCV のほとんどは肝内に存在するため、手術前に、血清中の C 型肝炎ウイルスを検出しようとする試みがある。しかし、再発率は低くないため（Table 2）、一般的には行われていない。肝硬変症例が多いため慢性化しにくくとも、少なくとも生体肝移植においては十分なデータの集積はない。

2. 免疫抑制療法

肝炎再燃によるグラフトロスを防ぐために、移植後の免疫抑制を steroid free とする試みが広まりつつあるが、一方で、急速にステロイド減量をした方が肝炎
再燃の危険が高かったとする報告もあり11)，早期ステロイド剤の有効性、安全性は今後も議論を重ねる必要がある。サイクロスポリンの抗ウイルス効果に関しては意見の一致をみていない12)。教室では、C型肝炎慢性症例に対し、免疫抑制剤のプロトコールを変更していない。

3. 肝炎再発判定と治療時期
再発の診断基準は、欧米ではトランスアミナーゼの正常上限の2〜3倍で、肝生検にて肝炎の所見があるものと定義されている。Ghobrialら10)は脳死肝移植患者において、HCCの再発時期がHCC陽性症例の予後因子になっていると報告し、特に移植後1年以内に再発した症例では、年累積患者生存率、グラフト生着率は各々約60%、52%と、それ以降に再発した症例に比べ有意に予後不良である。HCC陽性症例では、HCC再感染対策を十分に行わないこと、良好な予後は見込めない可能性がある。さまざまな予後不良因子の中で、ドナー年齢が注目されている17)。また、生体肝移植のほうが、果たして脳死肝移植よりも再発時期が早く、予後不良なのか、まだ議論のあるところではっきりしない。米国での大規模比較検討(A2ALL)の結果を持たたい28)。

高ウイルス血症が長期間継続すると急速に黄疸が進行し、いわゆるcholestatic hepatitis18)に移行することがある。組織学的には、細胞間の破壊様、門脈領域の著明な纖維化、胆汁鬱滞などが特徴であるが、特にcholestatic hepatitisに特異的なものはない。抗ウイルス療法に反応するものもあるが、一般的には極めて予後不良であり、再移植しても良好な結果は望みにくい。

現在では、ペグインターフェロンとリバビリンとの併用療法が再発治療のスタンダードである(Table 3)。Bizzolli20)は再発症例に対し、併用療法を6ヶ月、さらにリバビリンのみを6ヶ月行ったところ、18ヶ月の治療終了後6ヶ月後、血清中HCVが陰性であった症例は26%(14/54)であったと報告している。さらに14症例中13例では血中やグラフト中のHCV陽性が3年間持続した。現在の併用療法の問題点は、その副作用のため、長期間の継続は難しいことである。

4. 予防的治療
脳死肝移植では、再発の有無にかかわらず抗ウイルス治療を行うのが、予防的治療はあまり一般的ではない。教室では、生体肝移植症例において、早期より予防療法に努めてきた21)。全例で術後1〜2ヶ月をめどにインターフェロンalpha 2bとリバビリンによる併用療法を行っている。インターフェロンalpha 2bは300万単位週3回、リバビリンは400mg/日からスタートし、骨髄抑制、うつ傾向、溶血性貧血などの重篤な合併症の出現の危険を確認し、問題なければ、各々、600万単位週

Table 2 Pretransplant treatment for HCV

<table>
<thead>
<tr>
<th>Study</th>
<th>No of patients</th>
<th>Treatment</th>
<th>Response rate(%)</th>
<th>Relapse rate among the responders(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crippin</td>
<td>15</td>
<td>IFN</td>
<td>33</td>
<td>Not described</td>
</tr>
<tr>
<td>Everson</td>
<td>102</td>
<td>IFN + RBV</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>Forns</td>
<td>30</td>
<td>IFN + RBV</td>
<td>30</td>
<td>33</td>
</tr>
</tbody>
</table>

IFN: interferon; RBV: ribavirin

Table 3 Peginterferon alfa-2b and ribavirin combination for HCV recurrence after liver transplantation

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>N</th>
<th>Duration(M)</th>
<th>Treatment</th>
<th>Ribavirin (mg/day)</th>
<th>At the end of treatment</th>
<th>Sustained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mukherjee</td>
<td>2003</td>
<td>38</td>
<td>Not described</td>
<td>1.5 mcg/kg/w</td>
<td>800</td>
<td>38%</td>
<td>31%</td>
</tr>
<tr>
<td>Neff</td>
<td>2004</td>
<td>57</td>
<td>12</td>
<td>1.5 mcg/kg/w</td>
<td>400-600</td>
<td>25%</td>
<td>Not described</td>
</tr>
<tr>
<td>Rodriguez</td>
<td>2004</td>
<td>33</td>
<td>12</td>
<td>0.5-1.5 mcg/kg/w</td>
<td>400-1000</td>
<td>37%</td>
<td>26%</td>
</tr>
<tr>
<td>Rome</td>
<td>2004</td>
<td>16</td>
<td>12</td>
<td>1.5 mcg/kg/w</td>
<td>800-1000</td>
<td>38%</td>
<td>Not described</td>
</tr>
<tr>
<td>Dumortier</td>
<td>2004</td>
<td>20</td>
<td>28</td>
<td>0.5-1 mcg/kg/w</td>
<td>400-1200</td>
<td>55%</td>
<td>45%</td>
</tr>
<tr>
<td>Chalasani</td>
<td>2005</td>
<td>33</td>
<td>12</td>
<td>180 mcg</td>
<td>Not described</td>
<td>27%</td>
<td>12%</td>
</tr>
</tbody>
</table>
肝移植の現況と今後の課題

3 回、リバビリンは 600 mg/日にドーズアップしている。対象症例は 51 例で、sustained viral response rate は 31% (geno type 1b では 29%) であり、概ね満足すべきものであった。

おわりに

ウイルス肝炎肝硬変に対する肝移植について概説した。HBV 隣性症例では HBIG のコストの問題と、今後増加すると予想される術前からの変異株陽性症例の対策が問題となる。HCV 隣性症例ではペゲインターフェロンとリバビリンの併用療法に代わる、より効率が高く、副作用が少ない治療法の開発が望まれる状況である。

謝辞：本研究の一部は厚生労働科学研究費補助金 エイズ対策研究事業「HIV 感染症に合併する肝疾患に関する研究」、難治性肝炎研究事業「難治性の肝疾患に関する調査研究」、肝炎等感染緊急対策事業（肝炎分野）「C型肝炎への肝移植後の免疫抑制法に関する研究」、文部科学省科学研究費補助金に据った。

文献