寄書

伊豆大島火山，北の山・伊東無コアの放射性炭素年代

山元孝広*・川邊禎久*

(2010年5月31日付受, 2010年10月6日受理)

14C ages for the Kitanoyama and Itonashi cores in Izu-Oshima volcano, Japan

Takahiro Yamamoto* and Yoshiiisa Kawanabe*

Izu-Oshima volcano is one of the most active basaltic volcanoes in Japan, and consists of the pre-caldera older and younger edifices, the syn-caldera ejecta, and the post-caldera edifice. The Japan Metrological Agency made new boreholes on this volcano in 2009. We dated two carbon samples from the Kitanoyama core in the northwestern foot and the Itonashi core in the northeastern flank. OSKT01 at -58.70 m of the Kitanoyama core and OS1T01 at -69.35 m of the Itonashi core, which represent the upper part and the middle part of the pre-caldera younger edifice, are dated at 2040_{-70}^{+70} y BP and 966_{-70}^{+70} y BP by AMS 14C method, respectively.

Key words: Izu-Oshima volcano, borehole, 14C age

1. はじめに

気象庁による平成21年度のボアホール型火山観測施設の整備に伴い採取された全国47地点のコア試料について、火山噴火予知連絡会に設置されたコア解析グループのもとで記載が実施されている。著書では、これらのうちの伊豆大島火山で掘削された2本のコア（北の山・伊東無コア）から採取された計2試料の放射性炭素年代測定結果について報告する。コアは産総研のコアライブラリーに保管されており、記載も産総研のコア作業スペースで実施した。コアの詳細な岩相記載や岩相構成については、別途、気象庁から報告書が発行される予定である。

伊豆大島火山の断層については、下位から先カルデラ火山とカルデラ形成期カルデラ火山に分ける（Nakamura, 1960, 1964; 一色, 1984; 川邊, 1998）。更に先カルデラ火山は粗粒のマグマ蒸気爆発火砕物の卓越する古期火山とマグマ噴火の卓越する新期火山に区分される（一色, 1984; 川邊, 1998）。この古期と新期はNakamura (1964) の泉津層群と古期火山層群に相当するものである。北の山コアは伊豆大島の北西山麓。伊東無コアは北東山腹で掘削されたもので（Fig.1）、その岩相はこれまでに確立された伊豆大島火山の断層と矛盾しない（Fig.2）。

2. 北の山コア

掘削位置：北の山小学校（N 34°46′42.7″ E 139°21′39.7″）標高41.2 m。

岩相：地表面から深度4.12 mまでは、砂質火山灰土からなる。深度3.09 mには、厚さ2 mmの白色ガラス質火山灰が含まれている。この砂質火山灰土はNakamura (1964) の沸湯層および野営層に相当し、後カルデラ期の堆積物である。

深度4.12 mから深度4.20 mまでは、火山灰質基質を持つ石英細粒火山灰からなり、カルデラ形成期の炭地域層S層の火砕物分布層堆積物である（山元, 2006）。

深度4.20 mから深度4.87 mまでは、火山灰火山灰からなり、先カルデラ火山新期火山の最上層に相当する。

深度4.87 mから深度55.60 mまでは、フォローユニットの玄武岩溶岩流からなる。フォローユニット内にはアカ・クリンカーからなる破砕部が確認できる。これらフォローユニットの溶岩流が一致の噴火産物か複数の噴火イベントの産物かは、コアの肉眼観察のみからは判断できなかった。地形的には、北西山麓の側方から噴出したものとみられ、岩相上は陸上定置と判断される。個々の

* 〒305-8567 茨城県つくば市東1-1-1 中央第7産業技術総合研究所地質情報研究部門

Geological Survey of Japan, AIST, Higashi 1-1-1, Central 7, Tsukuba 305-8567, Japan.

Corresponding author: Takahiro Yamamoto

e-mail: t-yamamoto@aist.go.jp
溶岩流の詳細な対照には今後の岩石学的な検討が必要である。

深度 55.60 m から深度 57.80 m までは、コアの回収が悪く、岩相の判定は不能である。

深度 57.80 m から深度 59.00 m までは、礫泥粒の粗粒砂からなり、未炭化の木片を含んでいる。

深度 57.80 m から深度 88.80 m までは、極端にコアの回収が悪く、回収された礫状のコアにも掘削時のセメント片が混入するなど、本来の岩相を判定することができない。未回収部のコアの深度は現在の海面下－14.4 m から－47.5 m であるので、おそらくその岩相は海底の未固結砂礫層で、溶岩流は挟まれていないとみられるが、詳細は不明である。

深度 88.80 m から深度 92.78 m までは、粗粒のマグマ水蒸気爆発降下火砕物からなる。その岩相は先カルデラ火山古期山体（泉津層群）の火砕物とよく似ており、直下の溶岩流も含め、同山体構成物に対比しておく。

深度 92.78 m から孔底の深度 100.70 m までは、一枚の玄武岩溶岩流からなる。表面にはアーキ・クリンカーを伴い、陸上定置の溶岩流である。

3. 伊東無コア
掘削位置：伊東無 (N 34°46'29.0" E 139°24'38.3")，標高 231.3 m。
岩相：地表面から深度 4.39 m までは、粗粒火山灰を挟んだ砂質火山灰土からなる。深度 3.51 m には、厚さ 3 mm の白色ガラス質火山灰が含まれている。この砂質火山灰土は Nakamura (1964) の湯場層および野安層に相当し、後カルデラ期の堆積物である。

深度 4.39 m から深度 5.40 m までは、火山灰質基質を持つ石質火山礫からなり、カルデラ形成期の砂地層 S 2 部層の火砕物密度流堆積物である（山元，2006）。

深度 5.40 m から深度 9.57 m までは、ソコリア降下火砕物や礫泥じり砂を挟んだ砂質火山灰からなり、先カルデラ火山新期山体の最上部に相当する。

深度 9.57 m から深度 12.9 m までは、一枚の玄武岩溶岩流からなる。その直下の深度 18.29 m から深度 18.96 m にはソコリア降下火砕物がある。

深度 18.29 m から深度 33.38 m までは、一枚の玄武岩溶岩流からなる。ただし、溶岩内部の岩質は不均質で、上下で斑晶量が異なっている。

深度 33.38 m から深度 36.77 m までは、主に高密度流後堆積物からなる。

深度 36.77 m から深度 69.15 m までは、玄武岩としては異常な厚い一枚の溶岩流からなる。溶岩基底部のクリンカー（深度 67.12 m から深度 68.08 m）に疎理を持つシルト岩片が取り込まれていることから、溶岩は湿地のような凹地に流れ込み、それを埋め立てたものと考えられる。

深度 69.15 m から深度 89.54 m までは、主に高密度流後堆積物からなり、僅かに降下火砕物を挟んでいる。おそらく幅広い構成していたものと考えられる。最も上の深度 69.15 m から深度 69.74 m の淘汰の悪い砂層には僅かに砂質物が含まれている。また、深度 83.68 m から深度 84.55 m には火山灰石を含む粗粒のマグマ水蒸気爆発降下火砕物が挟まっている。

深度 89.54 m から孔底の深度 100.09 m までは、粗粒のマグマ水蒸気爆発降下火砕物からなる。その岩相は先カルデラ火山古期山体（泉津層群）の火砕物とよく似ており、同山体構成物に対比しておく。

Fig. 1. Location for the boring sites.
4. 濃年試料と分析結果

北の山コアからは、深度58.70 m の赤褐色で黒混じりの塊状極粗粒砂に含まれる未炭化の木片（長径約3 cm、短径約6 mm）を採取し、分析試料とした（OSKT01）。伊東無コアからは、深度69.35 m の暗褐色で黒い塊状中粒火山砂から長径5 mm以下の炭化物を手選別し合計5 mgを分析試料とした（OSIT01）。

分析は、BETA ANALYTIC 社に依頼した。炭化物は
全て酸/アルカリ/酸洗浄の前処理が施されている。また、分析手法はAMS法であり、年代値はRCYBP（AD1950を0年とする）表記され、δ13C補正が行われている。量数値にStuiver et al.（1988）のデータベースが用いられた。量数値の算出にはTalma and Vogel（1993）の手法が用いられた。OSKT01の放射性炭素年代は2040±70y BP、OSIT01の放射性炭素年代は9660±70y BPである（Table 1）。

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>Method</th>
<th>Material</th>
<th>14C age (y BP)</th>
<th>δ13C (permil)</th>
<th>Calibrated 14C age (y BP)</th>
<th>Calendar age</th>
<th>Intercept age</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSKT01</td>
<td>58.70</td>
<td>AMS</td>
<td>b</td>
<td>2090±40</td>
<td>-27.9</td>
<td>2040±40</td>
<td>BC170-AD50</td>
<td>BC40</td>
</tr>
<tr>
<td>[272114]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSIT01</td>
<td>69.35</td>
<td>AMS</td>
<td>a</td>
<td>9690±70</td>
<td>-27.1</td>
<td>9660±70</td>
<td>BC9270-8800</td>
<td>BC9180</td>
</tr>
<tr>
<td>[272113]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a = charred material
b = wood

Table 1. Results of 14C dating.

5. 年代値の解釈

北の山口成層は58.70mから得られたOSKT01の年代（2040±70y BP）は先カルデラ火山期台地の最上部の年代としては妥当なものであり、深度4.87mから深度55.60mまでの北西山脈の側火口群からの溶岩流の層序的な位置とも矛盾しない。大島西側の北西海岸帯は約2千年前から1.7千年前のカルデラ形成までの溶岩流出て比較的短時間の内に陸化したものと考えられる。また、深度92.78mから孔底の深度100.70mまでの溶岩流の定位置は現在の海面下30m前後であるので、この溶岩流は水期の低海面期に噴出したものとみられる。

伊豆無火山の深度69.35mから得られたOSIT01の年代（9660±70y BP）は、深度36.77mから深度69.18mの厚い玄武溶岩流の噴出年代とみなせよう。この基層地点の地下に先カルデラ火山期の約1万年前の厚い玄武溶岩流が伏在することは側面剝離には確認されておらず、新たな発見である。この厚い溶岩流が埋め立てた凹地は先カルデラ火山の古期台地と新期台地の間に形成されたもので、現在の地形からは判読できないものの、両者の間には大きな地形的なギャップが存在したことを示唆している。

謝辞

ポーリングコアは気象庁から提供されたものであり、火山噴火予知会議会コア解析グループ事務局の方々、産総研のコアライブラリー管理担当者には便宜を図っていただいた。また、地震研究所前野深さんにはコアの一次記載でご協力顶いた。以上の方々に感謝いたします。

引用文献

田中栄久（1998）伊豆大島火山地質図。火山地質図。10。地質調査所，1-8。

一色直記（1984）大島地域の地質。地域地質調査報告（5万分の1地質図）。地質調査所，1-133。

Stuiver, M., Reimer, P. J., Bard, E., et al.（1998）INTCAL 98 Radiocarbon Age Calibration, 24,000–0cal BP. Radiocarbon, 40, 1041–1083。

山元孝広（2006）伊豆大島火山。カルデラ形成期の火砕物密度推積物：差末層和Sf層の層序・岩相・年代の再検討。火山，51，257-271。

（編集担当 宮城聡治）