変化した可能性が考えられる。
以上により耳下腺唾液および顎下腺唾液は、食餌の湿潤度および体液浸透圧により分泌量が変化し、咀嚼・嚥下をより円滑にしていることが示唆された。

論文審査結果の要旨
本論文は、無麻酔・無拘束下のラットを用いて、食餌の性状および高浸透圧刺激による耳下腺および顎下腺の唾液分泌変化を調べている。ネプトウル酵素下にてラット耳下腺および顎下腺導管にポリエチレンチューブを挿入し、チューブは皮内を通してあらかじめ頭蓋骨に取り付けたネジで固定している。覚醒後、チューブを唾液分泌測定装置につなぎ、唾液が分泌されることによって生じる圧力の変化を圧トランスデューサーを用いて測定している。固有唾液は、耳下腺ではほとんど観察されず、顎下腺でわずかに認められた。固定食および粉末食では耳下腺唾液、顎下腺唾液はともに多量に分泌された。液状食では、耳下腺唾液はわずかに分泌される程度であったが、顎下腺唾液は多量に分泌された。ラットは頻繁に毛繕いを行うが、毛繕い時には顎下腺唾液のみ分泌が認められた。4% sucrose, NaCl, 塩酸、キニーネによる味覚刺激では、分泌された耳下腺唾液はわずかであった。これらのことから固定食または粉末食では、食塊形成に多量の唾液が必要であるが、液状食は、十分に湿潤しているので、唾液をあまり必要としない可能性が考えられる。また、ラットにおいても耳下腺唾液と顎下腺唾液は異なる役割を持つことが推察される。腹腔内への高張食塩水投与あるいは一日絶水刺激により、固定食摂食時の唾液分泌速度は減少したが唾液分泌量は増加した。高浸透圧刺激により体液浸透圧が上昇し、唾液分泌に影響を与えたと考えられるが、口腔内の感覚も変化した可能性も考えられる。以上の研究結果は、耳下腺唾液および顎下腺唾液は食餌の湿潤度および体液浸透圧により分泌量が変化し、咀嚼・嚥下をより円滑にしていることを示唆する興味深い知見を報告しており、学位論文として価値ある業績と認めた。

氏名（本籍） 後藤 佳 穂（岐阜）
学位の種類 博士（歯学）
学位認定番号 甲第455号
学位認定日 平成14年3月29日
学位認定要件 大学院歯学研究科口腔外科学専攻
博士課程修了者（学位規則第4条第1項該当者）
学位論文題名 ヒト口腔扁平上皮癌細胞のオカダ酸誘導アポトーシスにおけるFasレセプターおよびFasリガンド発現の制御とcaspase活性
論文審査委員 （主査）教授 西原 達次
（副査）教授 高橋 哲
（副査）教授 大島 邦昭

主論文の要旨
Fasレセプターを介するアポトーシス誘導機構は急速に解明されてきた。我々のグループは、蛋白質脱リン酸化酵素阻害剤として知られているオカダ酸がヒト口腔扁平上皮癌細胞にアポトーシスを誘導することを報告した。ところが、オカダ酸誘導アポトーシスとFas系カスケードに関しては未知の部分が多い。本研究で私たちはヒト舌癌由来SCC-25細胞におけるオカダ酸誘導アポトーシスとFas系カスケードの関連について検討した。オカダ酸処理細胞をHoechst 33342で染色し、核の形態変化を観察するとともに、処理細胞の電子顕微鏡観察を行った。コントロール群と比較して、オカダ酸処理細胞では、アポトーシスに特徴的な核の断片化、クロマチンの凝集が認められた。次にRT-PCR法、ウエスタンプローティング法を用いて、FasレセプターとFasリガンドのm-RNAおよび蛋白の発現を調べた。SCC-25細胞はFasレセプターとFasリガンドおよびm-RNAおよび蛋白を発現しているが、オカダ酸は時間および濃度に依存してその発現量を促進した。また、オカダ酸処理後2時間で、転写因子であるNF-κBの活性
がみとめられた。FasレセプターおよびFasリガンドの発現の促進はNF-xBの活性と関連する可能性が高い。

FasレセプターにFasリガンドが結合しFasレセプターが活性化すると、細胞内で何種類かのcaspaseが活性型に変化し、その結果、細胞死が起こる。オカダ酸誘導アポトーシスの機構をより詳細に検討するために、オカダ酸処理細胞におけるcaspase-8とcaspase-3の活性を測定した。オカダ酸は時間および濃度に依存して、caspase-8とcaspase-3の活性を促進した。オカダ酸処理後12時間よりSCC-25細胞のcaspase-3の活性が認められ、経時的に増大し、48時間で最大となった。活性型caspase-3はアポトーシスに特徴的なDNAの断片化に働く分子を活性化することが報告されている。そこで、オカダ酸処理細胞より経時にDNAを抽出し、DNAラダー形成を調べたところ、12時間後よりDNAラダーの形成が認められ48時間後に最大となっ。以上の結果より、オカダ酸はSCC-25細胞においてFasレセプターとFasリガンドの発現およびcaspase-8、caspase-3の活性を促進することにより、アポトーシスを誘導することが明らかになった。すなわち、オカダ酸誘導アポトーシスにはFas系カスケードが関与していることが明らかになった。

論文審査結果の要旨

本論文で、論文提出者は、ヒト舌由来のSCC-25細胞を用いてオカダ酸誘導アポトーシス誘導機構を解析した。まず、アポトーシスの検出系で汎用されているヘキスト染色、電顕観察、およびアガロース電気泳動を行ない、オカダ酸による細胞死形態がアポトーシスであることを明らかにした。さらに、オカダ酸によるアポトーシス誘導が、単に細胞内のタンパク質脱リン酸化酵素の阻害によるものではなく、FasおよびFasレセプターを介してアポトーシスが誘導される可能性を提示した。一方で、生化学的な手法を用いて、オカダ酸により誘導されるアポトーシスにカスパーゼ-3、-8が関与している可能性を示した。今回の審査では、提出者に研究内容について、1時間ほど口頭で発表をしてもらい、その後、1時間程の質疑応答を行った。そこで、審査員から(1)オカダ酸刺激により誘導されるSCC-25細胞のアポトーシスが、FasおよびFasレセプターを介しているという主張を裏付ける実験結果とその点に関する考察の不足、(2)今後の研究にどのような展開が考えられるか、例えば、免疫機能と関連を調べてはどうか、(3)ガン治療への応用の可能性、などが指摘された。後日、再提出された論文を再審査した。その結果、本論文がオカダ酸により誘導されるアポトーシスの解析を通じてガン細胞死研究に新たな知見を加えたものであり、九州歯科大学大学院の学位論文として価値ある業績であると判断した。

氏名(本籍) 高瀬豊和(栃木)
学位の種類 博士(歯学)
学位記受与番号 甲第456号
学位記受与日付 平成14年3月29日
学位授与の要件 大学院歯学研究科歯科麻酔学専攻
博士課程修了者(学位規則第4条第1項該当者)
学位論文題名 ベンゾジアゼピン受容体作動性抗不安薬の青斑核-大脳皮質前頭前野ノルエピネフリン神経系への作用
論文審査委員 (主査)教授 黒木賀代子
(副査)教授 天野仁一朗
(副査)教授 稲永清敏

主論文の要旨

ミダソラムをはじめとして歯科麻酔科臨床で広く用いられているベンゾジアゼピン（以下、BZP）系抗不安薬は、GABA受容体と共駆するBZP受容体と結合してGABA神経性抑制を賦活させる。BZP受容体作動薬であるBZP系抗不安薬は、抗不安作用以外にも鎮静、筋弛緩、抗痙攣、健忘、さらには呼吸抑制などの種々の中枢神経系薬理作用をもつが、これはGABA神経が脳内に広く分布し、様々な神経系に抑制作用をかけているために他ならない。1980