主論文の要旨

ヒトの骨密度は老齢期の第二次成長期までに、peak boneを獲得することが重要である。本研究ではWistar系雄ラットを用いて成長期のカルシウム摂取不足によって骨密度状態を悪化させた。直ちに歯槽骨を改善する目的でカルシウム含有量が高く報告されているユニカル®を用い、下顎骨の形態にいかなる影響を及ぼすか、側頭窩X線規格写真撮影法を従来MD法では困難であった単位体重当たりの骨密度と皮膚骨と椎骨の分離の可能な末梢骨密度測定的CT法 (peripheral quantitative computed tomography;pQCT)を併用し検討した。材料はヒトの幼児期に相当する生後5週齢の雄ラットを無作為に以下4群に分けた。対照群：標準食と水道水で7週間飼育、低カルシウム食群：A食変型低カルシウム飼料（カルシウム30％）と水道水で7週間飼育、低カルシウム標準食群：A食変型低カルシウム飼料（カルシウム30％）と水道水で7週間飼育、低カルシウム・ユニカル®食群：A食変型低カルシウム飼料（カルシウム30％）と水道水で7週間飼育、ユニカル®食に入替えて4週間飼育、4週間飼育後、ユニックル®入替えて4週間飼育。1. 側頭窩X線規格写真撮影法による下顎骨の測定：座標分析を行うにあたって成長期において比較的安定しているといわれているオシタイ孔を原点とし下顎骨下縁面に平行な直線を垂直な直線をそれぞれ座標軸X、Yとした。2. 下顎の測定：骨密度測定装置を用いて、スライス厚0.46mm、ピクセルサイズ0.12mmの条件で下顎第一大臼歯の根尖を含むように3スライスを測定したうえから、もっとも歯根が長くスキャンできた画像を、以下の項目に関し、解析した。①皮膚骨密度②皮膚骨面積③皮膚骨骨量④椎骨骨密度⑤椎骨面積⑥椎骨骨量、結果：1. 側頭窩X線規格写真撮影法：対照群と比べ低カルシウム食群は、関節突起の深さ成分（X成分）、筋突起部の深さ成分、高さ成分（Y成分）の点において、有意に低値を示した。低カルシウム食・標準食群では、対照群と比べ有意差が認めなかった。2. 下顎骨の測定：低カルシウム食群および低カルシウム・ユニカル®食群では、下顎面積を除くすべての項目で対照群に比べ有意な低値を示した。一方、低カルシウム・ユニカル®では海綿骨密度以外のすべての項目で対照群と比べ有意差が認めなかった。以上結果より幼児期以降の成長発育期における脆弱度を示した下顎骨に食事療法を行った結果、標準食では、量的な変化を反映するセファロスに十分な回復が認められたが、質的な変化である骨密度測定では十分な回復が認められなかった。

論文審査結果の要旨

本研究はカルシウム含有量が多いとされているユニカル®の投与効果を動物実験により確かめたものである。実験動物としては生後5週齢のWistar系雄ラットを用い、3週間低カルシウム食で飼育したあと、4週間ユニカル®を与え、その効果を求めている。ユニカル®投与効果の判定指標として、下顎骨の形態、下顎骨海綿骨の面積、密度および骨塩、下顎骨皮質骨の面積、密度および骨塩量などを設定した。下顎骨形態の測定はX線写真上に設定した各解剖学的測定間距離を測定している。海綿骨と皮質骨の面積、密度および骨塩量の測定は小動物用に開発されたX線CTの利用により行っている。

結果としては、低カルシウム食により飼育した場合の下顎骨の形態的変化として、特に関節突起と筋突起部の形態
成が認められた。しかしながら、ユニカル®にて飼育した場合には、関節突出と筋突起部はもとより、下顎骨全体において各計測値は対照群におけるよりも有意に高値を示し、X 線 CT による下顎骨の測定においては、低カルシウム食で飼育した場合、海綿骨の面積に変化は生じなかったものの、その他の計測項目においては、すべて対照群におけるよりも有意に低値を示した。しかしながら、その他の計測項目においては対照群におけるものと有意差は認められなかった。

以上の結果はカルシウム含有量が多いユニカル®を投与することにより、一旦脆弱になったラット下顎骨は形態的にも質的にも回復することを示唆したものであり、その内容は学位論文として価値ある業績と認めた。

氏名（本籍） 大西基伸（鹿児島）
学位の種類 博士（歯学）
学位記授与番号 甲 第479号
学位記授与日付 平成15年3月31日
学位授与の要件 大学院歯学研究科小児歯科学専攻
博士課程修了者（学位規則第4条第1項該当者）
学位論文題名 An experimental study on the effects of dietary therapy using calcitonin and ipriflavone on debilitated bone of growing rats
—Ultrastructural examination of mandibular condyle—
論文審査委員 （主査）教授 豊島邦昭
 （副査）教授 福山宏
 （副査）教授 小林繁

主論文の要旨
本研究では、成長期ラットの下顎前後軟骨に対してカルシウム摂取不足により虚弱状態に陥った場合、ホルモン製剤であるウサギカルシトニン誘導体（ECT）と非ホルモン製剤であるイプリフランボ（IF）の併用療法により、軟骨内骨化による骨基質形成にどのような影響を与えるかを微小構造的に検査し、次の結果を得た。

ヒトの乳児期に相当する生後3週齢のWistar 系雄ラットを無作為に以下の3群に分けた。対照群：標準食（オリエンタル酵母工業）と水道水にて6週間飼育。低カルシウム食群＋標準食群：A 食変型低カルシウム食（カルシウム30％：オリエンタル酵母工業）と蒸留水にて3週間飼育。低カルシウム＋ECT + IF 添加標準食群：A 食変型低カルシウム食（カルシウム30％）と蒸留水にて3週間飼育。ECT（0.2μg/kg：毎日大腿後部に筋注） + IF 添加標準食を切り替えて3週間飼育、その後超微細的に観察した。

1. 走査型電子顕微鏡所見
低カルシウム＋ECT + IF 添加標準食群は対照群と比べても同程度な回復所見が見られ、その特徴的な所見は、骨小腔の区画は明瞭で強走基質の幅が広く、ほぼ等に石灰化を呈していた。軟骨下骨形成帯の骨幹の幅が広く、大幅なコラーゲン原線維網がみられた。

2. 過顕型電子顕微鏡所見
対照群と比較して特徴的な所見は、低カルシウム + ECT + IF 添加標準食群では骨芽細胞の数が増加し、細胞内小器官が良好発達していた。また、骨細胞も数が増加し、細胞質突起が発達していた。破骨細胞は、減少傾向にあり、ruffled border は扁平化を呈し狭窄な状態となり、旺盛な骨吸収は抑えられていた。
以上のことから、ホルモン製剤および非ホルモン製剤の併用療法は下顎前後軟骨に対して、破骨細胞の活性化と分化を抑制することによる直接的な骨吸収抑制作用と同時に、骨芽細胞の活性化と分化を促進することによる直接的な骨形成促進作用により、骨基質形成が促進することが示唆された。