for this study. This system applied to three normal dentulous subjects and measured tongue pressure of palatal region when subjects were swallowing. Although the tongue pressure measuring system was useful to evaluate tongue pressure of palatal region, it was thought that some improvements were required about the position of sensor and the analyzing software. The maximum tongue pressure when natural swallowing was 85.0 g/cm² in early stage, 43.0 g/cm² in middle stage, and 53.0 g/cm² in late stage. Mean value was 60.3 g/cm². Tongue pressed anterior region of the palate in early stage of swallowing, central region of the palate in middle stage of swallowing, and central and posterior region of the palate in late stage of swallowing.

P − 32. MR sialography を利用した口腔乾燥症の診断へ向けた
−MR sialographyにおける最適 sequencesの確立−

〇森本 奈宏・田中 達朗・鬼頭 慎司・篠原 雄二・松本 忍・大庭 健
九澤大・歯放

MR sialography を口腔乾燥症の診断へ応用するに際しての、唾液腺微細管の描出に最適な sequencesを決定すること。方法：唾液腺管のphantom modelを作成し、過去に報告されるMR sialography応用可能な各種 sequences（2D-FASE, 3D-FASE, 2D-FSE, 3D-FSE法）により得られた画像を比較する。更に、volunteersに対しても同様の条件下において撮像を行い検討する。唾液腺管のphantom modelでは、3D-FSE, 3D-FASE, 2D-FSE, 2D-FASEの順で描出能が優れ、上位2種は直径0.5 mmの管も描出出来た。Volunteersでは、3D-FASE, 3D-FSE, 2D-FSE, 2D-FASEの順に優れていた。3D-FSE及び3D-FASE法を用いることで直径1 mm以下の管構造を描出でき、唾液腺管が狭小化する口腔乾燥症への対応も可能となる。

* Determination of the most suitable MR sialographic sequences

Yasuhiro Morimoto, Tatsuro Tanaka, Shinji Kito, Yuji Shinohara, Shinobu Matsumoto and Takeshi Ohba (Department of Dental Radiology, Kyushu Dental College)

The purpose of this study was to evaluate the utility of 3D-FASE sequences in MR sialography for the visualization of salivary gland ducts using phantom model and volunteers. We compared MR sialographic views obtained from 3D-FASE with those from 3 kinds of sequences described by previous reports in a 3D parotid gland duct model and volunteers. The 4 kinds of sequences were two-dimension fast spin–echo (2D-FSE), three-dimension fast spin–echo (3D-FSE), two-dimension fast asymmetric spin–echo (2D-FASE), and three-dimension fast asymmetric spin–echo (3D-FASE). In the 3D parotid gland duct model, image visibility on the visual score of 3D-FSE was the clearest, followed by 3D-FASE (p=0.028). In the volunteers, the visualization of images were improved in the following order: 3D-FASE > 3D-FSE > 2D-FASE > 2D-FSE. The technique of 3D-FASE sequencing is more suitable and useful for MR sialography with an appropriate acquisition time.