電解水の歯科への応用
柿川 宏・永松有紀・田島清司
小園 凱夫
九州歯科大学口腔機能再建学講座生体材料科学分野

平成17年4月18日受付
平成17年4月20日受理

Utilization of Electrolyzed Water in Clinical Dentistry
Hiroshi Kakigawa, Yuki Nagamatsu, Kiyoshi Tajima
and Yoshio Kozono

Division of Biomaterials, Department of Oral Functional Reconstruction,
Kyushu Dental College, Kitakyushu, Japan
E-mail: h-kaki@kyu-dent.ac.jp

Electrolyzed water has attracted great attention because of its excellent bactericidal activities. The electrolyzed water used in clinical dentistry is classified into three types: strong acid water, weak acid water and neutral water according to their pH values. All the three electrolyzed waters are well applicable to the disinfectant for the impressions, the acrylic dentures and the instruments showing excellent bactericidal activities in a significantly shorter treatment as compared with the conventional cleaning. However, strong acid water released a large amount of Au or Cu in the precious metal alloy, and showed a rapid deterioration of its bactericidal activity. The dissolution of ingredient of metal alloy decreased in weak acid water and further decreased in neutral water. The weak acid and neutral waters exhibited excellent durability.

Key words: Strong electrolyzed acid water/Weak electrolyzed acid water/Electrolyzed neutral water/Bactericidal activity

抄録
電解水は優れた消毒・殺菌作用を示すことから注目を集めている。現在歯科で利用されている電解水には、強電解酸性水、弱電解酸性水ならびに電解中性水の3種がある。これらの電解水は印象、アクリルレジン床そしてインスピールメントの消毒・殺菌に関して、市販の薬品による消毒・殺菌に比べて、短時間でかつ完全な効果を示し、3種の間には違いは認められなかった。しかし、強酸性水は貴金属合金成分のAuあるいはCuを大量に溶出させることや殺菌効果が急激に低下することが欠点としてあげられる。弱酸性水では溶出が減少し、中性水ではさらに減少した。また、この両者は殺菌効果に優れた持続性を示した。

キーワード：強酸性電解水/弱酸性電解水/電解中性水/殺菌効果
歯科において、院内感染に強い関心が払われるようになり、歯科材料・器材に対する消毒の必要性が強く認識されてきた。一般的な消毒・滅菌方法として、薬液消毒あるいは高圧滅菌が行われてきたが、これらは、歯科材料の寸法精度あるいは特性に大きな影響を与えることが報告されている。患者側は、これらに代わる消毒方法として、電解水の利活用を推奨してきた。電解水は特性として、①短時間で強力な殺菌効果を示す。②生体組織に対して悪影響がほとんどない。③生成コストが安価で、④時間が経過すると普通の水に戻るため、排水路や環境を汚染する心配がない。などの長所があげられる。一方、殺菌作用に持続性がない。⑦撹拌、蛋白の混入によって効率が低下する。⑧長期間の保存がきかない。⑨金属が腐食する。などいくつかの問題点もある。現在、電解水とは強電解酸性水、弱電解酸性水ならびに電解中性水（以下、強酸性水、弱酸性水、中性水と略す）の3種類が利用されている。本稿では、これら3種の電解水の特性を比較しながら、歯科臨床への応用に際して留意すべき点について考察する。

1. 電解水の種類

当教室が所有している電解水生成器ならびにその特性を表1に示す。微生物はpH値が7～8の中性付近で生存し、中性から離れるにつれ生存しにくくなり、pH値が3以下の強酸性、あるいは11以上の強アルカリ性では生存できなくなる（図1）。強酸性水はこの領域において殺菌効果の1つと考えられている。また、酸化還元電位（ORPと略される）は、酸化力あるいは還元力の強さを示すもので、この値が大きいほどそれにふれつつ微生物が酸化（あるいは還元）されて生存できない。一般に、+1000mV以上あるいは−500mV以下は微生物のティッドゾーンとされている。残留塩素濃度は水中的塩素ガスあるいは次亜塩素酸の濃度であり、この値が高いほど殺菌作用が強くなる。電解水は薬液病院においては、指標の洗浄消毒薬あるいは内視鏡の洗浄消毒薬として認可されてきたが、2002年には食品添加物としても認可された。食品添加物としても、ファーストフードなどではキッペなどの洗浄に使用された際にも、洗浄後に微量の電解水が残留していても人体に影響をおよぼさないという意味をもって認可されたものである。

（1）強電解酸性水

電解水として、最初に歯科で利用されたのは強酸性水であり、食塩水（0.05%程度）を隔膜を介して電気分解することにより生成される。歯科用としては、電解槽に強酸性水とアルカリ水ができる水槽が一般的であるが、工業的には水道直結式の流水型が利用されている。pH値が2.5程度の強酸性を示し、酸化還元電位が1,100mV以上であり、微生物の生存できない領域に属している。強酸性水中に含まれていて基底塩素の作用も伴って、強い殺菌効果を示す。電気分解の際に強酸性水と同様の電解アルカリ性水が生成されるが、このアルカリ性水には殺菌作用はあまりなくない。

（2）弱電解酸性水

弱酸性水は少量の酸を含む専用液を水道水に加えて、無隔膜で電気分解することにより生成される。水道直結式の流水型になっており、センサーを利用して一定量の

表1 使用した電解水の物性

<table>
<thead>
<tr>
<th>タイプ</th>
<th>pH</th>
<th>ORP (mV)</th>
<th>残留塩素濃度（ppm）</th>
</tr>
</thead>
<tbody>
<tr>
<td>強酸性水¹</td>
<td>2.4±0.05</td>
<td>+1,159± 3.2</td>
<td>49±1.7</td>
</tr>
<tr>
<td>弱酸性水²</td>
<td>6.4±0.27</td>
<td>+877±12.2</td>
<td>51±2.0</td>
</tr>
<tr>
<td>中性水³</td>
<td>7.0±0.07</td>
<td>+849±4.5</td>
<td>38±0.0</td>
</tr>
</tbody>
</table>

¹スーパーウォーターミニ（ヒラタコーポレーション）：貯水型 価格：約13万円
²アシシント（モリタ）：流水型 価格：約35万円
³APアクア21（アサヒプリック）：流水型 価格：約70万円
弱酸性水が手洗い用に出水される方式が採用されてい
る。pH値が5〜7と中性に近く、酸化還元電位も
+900mVと高く、微生物のデッドゾーンからはずれて
いるが、高い濃度の次亜塩素酸が強い殺菌効果を与えて
いると考えられている。無隔膜で電気分解が行われるこ
とからアルカリ性水は生成されない。

（3）電解中性水
近年AP水と称して開発された中性水は5％食塩水を
水道水に添加し、無隔膜で電気分解を行った後、有隔膜
で再度電気分解を行うことによって生成される。水道直
結式の流水型になっており、手洗い用には便利である。
pH値はほぼ中性で、弱酸性水と同様に高濃度の次亜塩
素酸が殺菌効果を高めているといわれている。有隔膜で
の電気分解の際に少量のアルカリ性水が同時に生成され
る。

（4）電解水のランニングコスト
当講座が所有している装置をもとに、電解水1ℓの生
成費用を概算したランニングコストを表2に示す。比較
のために殺菌消毒として利用されている各種薬品につ
いても1ℓの消毒液を作成するためのランニングコスト
を概算した。食塩を使用する弱酸性水あるいは装置が現
在1社しか販売されていないことから単純計算するこ
とにより求めた中性水の1.5ℓに比べると、専用液を
使用する無隔膜性水はランニングコストが少し高くなって
いる。しかし、最も高い消毒薬に比べると、100分の1以
下であり、さらにコスト面でいえる、流水式の装置
の場合には水道の蛇口を改良する必要があるが、貯水式
の装置の場合は設置場所を必要とするだけで特別な費用
はかからない。しかし、中性水の場合は特に生成装置が
高価であることが広く普及することへの障害となってい
るかもしれない（表1）。

<table>
<thead>
<tr>
<th>表２　生成量1リットル当たりのコスト</th>
</tr>
</thead>
<tbody>
<tr>
<td>ランニングコスト（円/ℓ）</td>
</tr>
<tr>
<td>一般的な強酸解酸性水          1〜４</td>
</tr>
<tr>
<td>一般的な弱酸解酸性水          7〜25</td>
</tr>
<tr>
<td>中性水（AP水）                  1.5</td>
</tr>
<tr>
<td>グルタールアルデヒド            1,080</td>
</tr>
<tr>
<td>次亜塩素酸ナトリウム            600</td>
</tr>
<tr>
<td>エタノール                       860</td>
</tr>
<tr>
<td>塩化ペニシルコニウム             940</td>
</tr>
<tr>
<td>グルコン酸クロルヘキシンジン     2,200</td>
</tr>
<tr>
<td>ポビドンヨード                    2,580</td>
</tr>
</tbody>
</table>

2. 歯科材料・器具の消毒・殺菌
1）印象に対する殺菌効果
歯科材料を取り扱う際に、まず消毒を必要とするのは
印象である。表3は菌液（Staphylococcus aureus 209P，
5.0x10^6個）を塗布したアルジェネート印象ならびにシリ
コーン印象を電解水あるいは蒸留水で消毒・殺菌した後
の残菌数を調べたものである^{12}、強酸電解水、弱酸解水
ならびに中性水のどちらも同じ結果が得られることから電
解水として示している。柔軟圧の分子が絡み合った構造
を持つアルジェネート印象では菌が印象中に侵入しやすい
ことから、蒸留水の場合、どのような条件でも効果が認
められない。電解水ではふき取りだけでは内部に侵入し
た菌まで効果がおそれがないが、流水で洗浄するだけで
10個になり、表面にスプレーすることにより菌数は10^-7
個まで減少する。さらに電解水中に浸漬することにより
わずか1分間で菌はほぼ完全に死滅する。表面が密な
構造をしていることから菌の侵入が認められないシリ
コーン印象では、水道水の場合も完全とはいえないが
洗浄だけで菌の減少が認められる。電解水では、洗
浄だけで完全といってよいほど効果が現れ、洗浄後に浸
漬することで菌は完全に死滅する。実験ではフラット面
の印象を採得した後から、菌が表面にだけにかか存在
しないシリコーン印象ではふき取りによって完全に除去
される点はアルジェネート印象との違いである。複雑な形
状をした有歯頸の印象採得では凹凸の洗浄効果を増すた
めに、電解水中で印象を数回取り動かすかあるいは超音

<table>
<thead>
<tr>
<th>表3 印象処理後の残菌数</th>
</tr>
</thead>
<tbody>
<tr>
<td>アルジェネート印象 シリコーン印象</td>
</tr>
<tr>
<td>蒸留水 電解水 蒸留水 電解水</td>
</tr>
<tr>
<td>処理前</td>
</tr>
<tr>
<td>洗浄</td>
</tr>
<tr>
<td>浸漬</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>超音波洗浄</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>スプレー</td>
</tr>
<tr>
<td>拭き取り</td>
</tr>
<tr>
<td>洗浄後浸漬</td>
</tr>
</tbody>
</table>

被検菌数：〜10^-7〜10^-5 〜10^-3〜10^-4（個） 〜10^-2〜10^-1 の場合
波洗浄を行うことで殺菌効果が確実になると思われる。一般的に利用されている薬液を用いた消毒・殺菌では、処理に時間がかかることから、印象を長時間浸漬していることになり、印象が寸法変化を起こし、変質することもある。その結果、せっそう表面の寸法精度が著しく損なわれることになる（図2）。もしくはゲルテールアルデヒド系（ステリハイド）で処理した場合にはせっこうの表面あらさも生じている。これに対して、処理時間が短い電解水では、寸法精度やその他の問題を引き起こすことはなく安全である。

成形コロイド材料に特有の吸水現象を示すアルジェーテント印象の場合、長時間浸漬を続けると膨潤して寸法変化を起こし、その印象を用いて作製させっこう模様はさらに変形したものになる。短時間で殺菌効果を示す電解水で利やすることにより作製されたせっこう模様の寸法変化は少なくなると思われる。なお、後述するように金属トレーニの腐食が考えられるが、洗浄した後に水洗いし、電解水を残さないようにすることで影響は抑えられるものと考えられる。

図2 アルジェーテント印象浸漬処理後に作製したせっこう模様の変形

2）義歯床に対する殺菌効果

口腔内に長時間着される義歯床には細菌が付着しやすいことから、義歯床の消毒用として、過酸化水素、次亜塩素酸、酵素系あるいは生薬系などが利用されており、それぞれに長所、短所があげられている。表4はアクリルレジン床ならびに粘膜調節材を裏装したアクリルレジン床に対する電解水の殺菌効果を調べたものである。蒸留水の場合、粘膜調節材を裏装していないレジン床では超音波洗浄することによりわずかに菌数が減少するが、粘膜調節材を裏装したレジン床では5分間浸漬することにより約2分間で死滅し、10分間浸漬し続けると完全に菌は死滅する。超音波洗浄を加えることにより、殺菌効果はわずかに向上している。

表4 義歯床から検出された被検菌数

<table>
<thead>
<tr>
<th></th>
<th>蒸留水</th>
<th>電解水</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>浸漬</td>
<td>超音波洗浄</td>
</tr>
<tr>
<td>アクリルレジン床</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>アクリルレジン床 (粘膜調節材裏装)</td>
<td>+</td>
<td>++</td>
</tr>
</tbody>
</table>

被検菌数 10^6

（個）+++=10^6 ++: 〜10^5 +++: 〜10^4 ++++: 〜10^3
電解水の歯科への応用（柿川他）

表5 各バーから検出された被検菌数

<table>
<thead>
<tr>
<th></th>
<th>無処理</th>
<th>処理水</th>
<th>水道水</th>
<th>強酸性水</th>
<th>弱酸性水</th>
<th>中性水</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>浸漬</td>
<td>1分間</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5分間</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>超音波洗浄</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1分間</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5分間</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>浸漬</td>
<td>1分間</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5分間</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>超音波洗浄</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1分間</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5分間</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

被検菌数：-：〜10  +：〜10^1  ++：〜10^2  +++：〜10^3  ++++：〜10^4

（個）  ++++：〜10^4  ++++++：〜10^5

浸漬したままだ超音波洗浄を行ったところ、わずか1分でほとんどの菌が死滅した。

電解水の欠点の1つとして金属の腐食があげられている。電解水に24時間浸漬した場合のスチールバーの表面（図3）に示す通り、強酸性水では刃先部分あるいは表面部分に腐食・変色がみとめられるが、弱酸性水では変色が少なく、中性水の場合はさらに少なくなり水道水ほど変わらない程度の腐食状態になっている。カーバイトバーの場合、タンゲステンカーバイトの刃の先端には腐食は認められず、刃と軸を銃入れした部分に腐食が認められ、強酸性水では24時間後に使用不可能なくらいまで腐食が進んでいる。弱酸性水ならばに中性水でも、銃接部に作られた刃の部分が消失するほどまで腐食が進んでいる。

電解水への24時間浸漬は、臨床において消毒・殺菌を1回3分間行うとして480回、1回1分とすると1440回に相当する時間になり、腐食の影響があらわれる前にバーの切れ味が悪くなってしまうものと考えられる。ただし、消毒・殺菌処理後に水道水で十分に洗浄することが必要であり、うっかり電解水中に置き忘れることがないように注意しなければならない。

4）歯科用合金への影響

歯科用の金合金（Au alloy）、銀合金（Ag alloy）、コバルトクロム合金（Co-Cr alloy）、...</textarea>
表6 齒科用合金から溶出した元素の累積溶出量（ppm/cm²）

<table>
<thead>
<tr>
<th></th>
<th>Pt</th>
<th>Pd</th>
<th>Cu</th>
<th>Au</th>
<th>Ag</th>
<th>Zn</th>
<th>In</th>
<th>Sn</th>
<th>Co</th>
<th>Cr</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>強酸性水</td>
<td>1.141</td>
<td>0.7262</td>
<td>1.5352</td>
<td>4.1114</td>
<td>0.0246</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.121)</td>
<td>(0.054)</td>
<td>(0.070)</td>
<td>(0.109)</td>
<td>(0.007)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>弱酸性水</td>
<td>0.0572</td>
<td>-</td>
<td>0.1274</td>
<td>0.221</td>
<td>0.025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.019)</td>
<td>-</td>
<td>(0.007)</td>
<td>(0.017)</td>
<td>(0.021)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中性水</td>
<td>-</td>
<td>-</td>
<td>0.0664</td>
<td>0.1714</td>
<td>0.0234</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>(0.006)</td>
<td>(0.010)</td>
<td>(0.002)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>強酸性水</td>
<td>-</td>
<td>2.616</td>
<td>-</td>
<td>0.2644</td>
<td>0.0974</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>(0.078)</td>
<td>-</td>
<td>(0.013)</td>
<td>(0.001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>弱酸性水</td>
<td>-</td>
<td>0.8826</td>
<td>0.0472</td>
<td>0.2622</td>
<td>0.0174</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>(0.073)</td>
<td>(0.006)</td>
<td>(0.007)</td>
<td>(0.001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中性水</td>
<td>-</td>
<td>0.4096</td>
<td>-</td>
<td>0.0646</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>(0.104)</td>
<td>-</td>
<td>(0.008)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>強酸性水</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.182</td>
<td>0.0938</td>
<td>3.5998</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(0.032)</td>
<td>(0.001)</td>
<td>(0.154)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>弱酸性水</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0518</td>
<td>0.0132</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(0.007)</td>
<td>(0.002)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中性水</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0296</td>
<td>0.0216</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(0.002)</td>
<td>(0.005)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>強酸性水</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1364</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(0.028)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>弱酸性水</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.2946</td>
<td>1.1766</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(0.255)</td>
<td>(0.064)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中性水</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.6052</td>
<td>0.4468</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(0.025)</td>
<td>(0.014)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- : 検出

ロム合金（Co-Cr alloy）ならびにチタン（Ti）を電解水中に7日間浸漬した場合の金属元素の溶出量を測定することにより、金属への影響を検討した。電解水中に浸漬した歯科用合金からの溶出元素について、試験片表面の単位面積あたりの累積溶出量（ppm/cm²）を表6に示す。また、溶出量の最も多くかった金合金中からのAu、金銀パラジウム合金中のCu、ならびに対アルトクロム合金中のCrの経時的な溶出量の変化を図5に示す。成分元素の溶出傾向は、電解水ならびに合金の種類によって著しく異なっており、金合金は強酸性水中で最も大きな腐食傾向を示し、主要な成分元素のすべてが溶出し、ときにAuの溶出量が最も多く、経時的に増加する傾向を示した。弱酸性水中では少量のAu、Cu、Ptの溶出がみられたが、その中でもAuの溶出が最も多かった。中性水中では成分元素の溶出はさらに少なくなり、Au、Cuのわずかな溶出が認められるだけであった。強酸性水に比べ、弱酸性水、中性水の経時的な変化は小さかった。金銀パラジウム合金においては、強酸性水中ではCuの溶出が最も多く、1日目に大きな溶出を示し、経時的な溶出はわずかであった。金合金の場合は異なりAuおよびPdの溶出は認められなかった。弱酸性水中では溶出量は減少し、中性水ではさらに少なくなった。銀合金からは、いずれの電解水中にも少量のAgおよびZnの溶出がみられたが、その量は強酸性水中で最も多かった。また、強酸性水中においてのみ、著しく多量のInが検出された。コパルト・クロム合金は、貴金属合金とまったく異なる溶出傾向を示した。強酸性水中では少量のCoが検出されたのみで、Crの溶出は認められなかった。しかし、弱酸性水中では多量のCo、Crの溶出がみられた。中性水中にもCo、Crの溶出が認められただが、その量は少なく弱酸性水中の場合の1/2程度であった。このことは、強酸性水中ではCrの強固な酸化
電解水の歯科への応用（柿川他）

図5

図5 鋼歯科合金からの成分元素の溶出。

膜ができることによる不動態化の効果によるものと思われる。チタンは、いずれの電解水中においてもまったく溶出を示さなかった。一般に強酸性水は pH 値が低く、ORP 値の高いことが殺菌作用の一因子といわれ、一方、弱酸性水および中性水は次亜塩素酸の濃度が高く、これが殺菌作用の主因と考えられている。このことから貴金属合金の変色、溶出は pH 値が強く影響しているといえる。しかし、コバルト・クロム合金は、強酸性水中では腐食せず、弱酸性水によって成分の溶出や変色が生じている。強酸性水中では不動態膜の形成なども関与していると思われるが、弱酸性水中の塩素や次亜塩素酸の合金に対する作用を明らかにする必要がある。また、中性水は pH 値が最も近く、次亜塩素酸濃度は高いが塩素濃度が低いとなる。これらの特性によって合金への腐食作用は他の電解水よりも弱くなったものと考えられる。

ウィルス感染予防のために電解水を用いて、1 回 1 分間のうがいを 1 日 3 回行うことを想定すると 7 日間の浸漬は 9 年以上の期間に相当し、連続して浸漬することにより金属の溶出を促進することからそれ以上の期間に相当すると考えられる。さらに塩酸水は蛋白質あるいは有機物に接触すると瞬時に普通的水に戻ることから、溶出の持続性はないと考えられる。このように口腔内に装着された金属補綴物への影響は少なくなると考えられるが、腐食・変色をできるだけ少なくするには中性水の利用が望ましい。

5) 保存条件の違いによる殺菌効果
これまで電解水の利点として、すぐに普通の水に戻ることから排水しても環境への影響が小さいことがあげられてきた。しかし、将来的に抜歯後の患者などに自宅でうがいなどにより口腔内の洗浄を気軽に行えることが考えられることから、保存条件の違いによる殺菌効果の持続性について検討した。実験には市販の洗浄水のペットボトルを用い、I: 密栓し、アルミ箔で完全に遮光して冷蔵庫で保存した場合、II: 密栓し、遮光して室温で保存した場合、III: 密栓し、遮光で室温で保存した場合、IV: 梱をはずし、遮光せずで室温で保存した場合の 4 条件で実験を行った。強酸性水は栓をはずずに保存した場合、残留塩素の減少が激しく、12 日目には完全に消失した。密栓することにより残留塩素の減少は抑制されるが、遮光・密栓・冷蔵庫保存の最下位条件でも徐々に減少し、120 日目には完全に消失した。弱酸性水は残存量の減少は緩やかであり、実験開始時に 50 ppm であった残留塩素濃度が非遮光・開栓・室温の条件では 120 日目でも 23 ppm であり、遮光・密栓・冷蔵庫の条件では 40 ppm を持っていた。中性水の場合、開始時に 39 ppm であったものが、遮光・開栓・室温の条件の 120 日目が 22 ppm と半分を超える塩素濃度を維持していた。残留菌数であった場合（図7）強酸性水は非遮光・開栓・室温の条件では 20 日目には残留菌数が 10^3 オーダーから 10^0 オーダーまでしか減少せず、殺菌効果が薄れ、60 日目にはほとんど殺菌効果が認められなくなった。保存条件が良くなるにつれ殺菌効果が持続するが、遮光・密栓・冷蔵庫の条件でも 70 日目まで菌の残存が多くなり、急激に殺菌効果が減少し、120
日目ではすべての条件で殺菌効果がなくなった。弱酸性水では室温保存した場合に遮光しないで120日目までで10^4オーダーの残菌数であり、殺菌効果が維持されていた。冷蔵庫保存した場合、77日（11週）後に残菌数が10数個、120日目では20数個であり、殺菌効果は十分維持されていた。中性水の場合は開栓した場合、11週後10^4オーダーの菌が残存するようになったが、冷蔵庫保存した場合、90日目で数個、120日目で10数個の菌が残存するだけで、殺菌効果は最も維持されていた。

ウィルス感染予防のために電解水を診療の前後に臨床で用いる場合、できるだけ殺菌効果が高い条件で使用することが望ましい。他の薬剤などに比べて電解水コストが非常に低いで電解水は保存したものでなく、できるだけ新しい生成水の利用を勧める。電解水は空気中に触れることにより塩素濃度が急激に低下する。また、密栓していなくても容器中の電解水の残量が少なくなるほど残菌塩素濃度は低下する。抜歯後の患者に自宅で利用することを勧める場合、冷蔵庫に入れるほどではないが、冷蔵所で保存し、くれぐれも蓋の閉め忘れをしないように注意が必要である。

3. 止血効果

図8は、九州歯科大学薬理学講座で行われた、マウス尾部切断創を用いる方法による出血時間の測定結果を示している。中性水（NW）と比較薬剤として歯科領域で使用されている局所止血薬のポスミン液（BS）、トロンビン局所用液（LT）、歯科用TDゼット（TD）、そして生理食塩水（NS）を対照被験液としている。中性水の出血時間は、薬剤として臨床で使用されているポスミン液と同じ1分42秒±27秒であり、無処置の6分±1分31秒に比べて有意に出血時間が短縮した。なお、パラッキが大きいが、トロンビン局所用液にも出血時間の有意な短縮が認められている。

このことから、中性水には局所止血効果があることが判明し、歯科臨床においても小出血を伴う際の効果、洗浄剤としての有用性が高いといえる。
電解水の歯科への応用（柿川他）

図7 各種電解水中の残留菌数。

図8 マウス尾部における出血時間。

まとめ
現在、電解水として強酸性水、弱酸性水ならびに中性水の3種が利用されている。当分野は、これらの電解水の歯科への応用について、1994年から検討、レジン床、インプラントメントの消毒ならびに各種歯科用合金の腐食挙動など一連の研究を行っている。その結果、薬液消毒に比べ、これら3種の電解水を用いた消毒・殺菌方法は、①短時間で強力な殺菌効果を示す、②生体組織に対して悪影響が少ない、③生成コストが低く、④時間が短くともとの水にもどるなどの利点を有し、有効な消毒法といえる。消毒効果には各種電解水の間で違いはないが、現在最も多く普及している強酸性水は、金属に対して強い腐食作用を示し、生成後約1週間で殺菌効果が低下するという欠点を有している。弱酸性水は強酸性水に比べ腐食作用は減少し、殺菌効果の持続性は向上しており、強酸性水と中性水の中間的な性質といえる。中性水は、長期保存が可能であり、通常の室内で40日間、密栓すれば90日間は強力な殺菌作用を維持できる。また、金属に対する腐食作用も水道水と同程度に弱く、無味、無臭、無刺激性で、止血効果も高いことから、今後歯科材料・医材の消毒だけでなく、歯部の消毒・洗浄ならびに含嗽・洗口薬としての応用が期待される。
引用文献
1）横山充，山本隆，田島清司，柿川宏，小園凱夫：電解酸性水によるアルジェート印象の殺菌効果．歯科 18: 1996.