Cavitation Tests on Six Profiles for Blade Elements

by Fukusaburo NUMACHI, Kenji TSUNODA and Ichirou CHIDA

Three well known profiles of distinguishing form used for blade element, namely Clark Y, Clark Y.H. and R.A.F. 6 have been tested in the cavitation tank of Tohoku University, Sendai Japan, for a study of the effects of form on the cavitation characteristics. The thickness-to-chord ratios of the each profiles are 11.7 and 6 percent respectively, namely 6 profiles have been taken for the test. The aim of the experiment is to provide some data of profiles suitable for blade elements of axial water turbines, pumps and ship propellers. The experimental results have been obtained concerning chiefly to the following items: (1) on the condition of cavitation occurrence, (2) the change of the lift and drag due to the cavitation factor, (3) the polar diagrams at the different degree of cavitation, (4) the comparison of the cavitation characteristics of the three profiles.

1. 引　言

既存翼型中、特徴のあるもの6個を取り、そのキャビテーション性能を求める。この目的は、浮上水車、浮上ポンプおよび船用機械の設計資料を提供するにあたるが、他面これにより、それがあらたな新しい翼型を採用する指針を得ようとしたのである。

2. 実験方法ならびに供試翼型

実験の方法は、日本機械学会論文集、6巻 22号、1940，III－1頁あるいはV.D.L.-Forschung, Bd. 2 (1940)，S. 303に詳細を述べたから、ここには省略する。

供試翼型は
第1図（厚比11.7％）
第8図（厚比6％）に示し、さらに翼の詳細は第1表および第2表に示した。

クラーク Yは、翼の端面がほとんど直線で、ただ翼の平面にウォッシュ・バックあり、これに対しクラーク Y.H.は端面後方ともウォッシュ・バックあり、R.A.F. 6はウォッシュ・バックが少ないものである。この3種の翼は、このような特徴ある形状を有するものであり、またどの実験結果が多く求められ参照に便なるがために採用したのである。

<table>
<thead>
<tr>
<th>供試翼型寸法表</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Clark Y</th>
<th>Clark Y.H.</th>
<th>R.A.F. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y0</td>
<td>y0</td>
<td>y0</td>
</tr>
<tr>
<td>0</td>
<td>3'50</td>
<td>3'50</td>
<td>3'50</td>
</tr>
<tr>
<td>1'25</td>
<td>5'45</td>
<td>1'93</td>
<td>5'45</td>
</tr>
<tr>
<td>2'5</td>
<td>6'50</td>
<td>1'47</td>
<td>6'50</td>
</tr>
<tr>
<td>5'0</td>
<td>7'50</td>
<td>0'93</td>
<td>7'50</td>
</tr>
<tr>
<td>7'5</td>
<td>8'85</td>
<td>0'63</td>
<td>8'85</td>
</tr>
<tr>
<td>10</td>
<td>9'60</td>
<td>0'42</td>
<td>9'60</td>
</tr>
<tr>
<td>15</td>
<td>10'69</td>
<td>0'15</td>
<td>10'68</td>
</tr>
<tr>
<td>20</td>
<td>11'36</td>
<td>0'03</td>
<td>11'36</td>
</tr>
<tr>
<td>30</td>
<td>11'70</td>
<td>0'00</td>
<td>11'70</td>
</tr>
<tr>
<td>40</td>
<td>11'40</td>
<td>0'00</td>
<td>11'40</td>
</tr>
<tr>
<td>50</td>
<td>10'52</td>
<td>0'00</td>
<td>10'52</td>
</tr>
<tr>
<td>60</td>
<td>9'15</td>
<td>0'00</td>
<td>9'15</td>
</tr>
<tr>
<td>70</td>
<td>7'35</td>
<td>0'00</td>
<td>7'29</td>
</tr>
<tr>
<td>80</td>
<td>5'22</td>
<td>0'00</td>
<td>5'62</td>
</tr>
<tr>
<td>90</td>
<td>2'80</td>
<td>0'00</td>
<td>3'84</td>
</tr>
<tr>
<td>95</td>
<td>1'49</td>
<td>0'00</td>
<td>2'93</td>
</tr>
<tr>
<td>100</td>
<td>0'12</td>
<td>0'00</td>
<td>2'05</td>
</tr>
</tbody>
</table>

L.E.R. 1'17
T.E.R. 0'94
3. 実験結果

（1）発生状態
発生状態に関しては、第2図（厚）に示す。

第2表 供試翼型寸法表

<table>
<thead>
<tr>
<th>x</th>
<th>y₀</th>
<th>y₁</th>
<th>y₂</th>
<th>y₃</th>
<th>y₄</th>
<th>y₅</th>
<th>y₆</th>
<th>y₇</th>
<th>y₈</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.79</td>
<td>1.79</td>
<td>1.79</td>
<td>1.79</td>
<td>0.60</td>
<td>0.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.25</td>
<td>2.80</td>
<td>0.99</td>
<td>2.80</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>3.33</td>
<td>0.75</td>
<td>3.33</td>
<td>0.75</td>
<td>2.47</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>4.05</td>
<td>0.48</td>
<td>4.05</td>
<td>0.48</td>
<td>3.55</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>4.54</td>
<td>0.32</td>
<td>4.54</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4.92</td>
<td>0.22</td>
<td>4.92</td>
<td>0.22</td>
<td>4.76</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>5.48</td>
<td>0.08</td>
<td>5.48</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>5.82</td>
<td>0.02</td>
<td>5.82</td>
<td>0.02</td>
<td>5.85</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>6.00</td>
<td>0</td>
<td>6.00</td>
<td>0</td>
<td>6.00</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>5.85</td>
<td>0.05</td>
<td>5.85</td>
<td>0.05</td>
<td>5.96</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>5.40</td>
<td>0</td>
<td>5.40</td>
<td>0</td>
<td>5.85</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>4.69</td>
<td>0</td>
<td>4.69</td>
<td>0</td>
<td>5.23</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>3.77</td>
<td>0</td>
<td>3.80</td>
<td>0.03</td>
<td>4.45</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>2.68</td>
<td>0</td>
<td>2.88</td>
<td>0.19</td>
<td>3.37</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>1.44</td>
<td>0</td>
<td>1.97</td>
<td>0.52</td>
<td>2.11</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>0.76</td>
<td>0</td>
<td>1.50</td>
<td>0.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.06</td>
<td>0</td>
<td>1.05</td>
<td>0.95</td>
<td>0.48</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

L.E.R. 0.60
T.E.R. 0.48

第2図 発生状態（発生条件、増強危険範囲および微小危険範囲）

比11.7%）および第9図（同6%）に示した。この図面においては3種の翼型をとりまとめてであるが、次の事柄を明らかにしてある。すなわち、(a) 発生条件、これはある迎え角αₘₙに対するキャピテーションの発生するキャピテーション係数kₘₙで与えである。b) 増強危険範囲、これはキャピテーションの消滅箇所λₗが100%をこえるとその危険がなくなるから、上記発生の線とλₗ＝100%の線との間がこの危険範囲ということになる（λₗとtとは第2図に示してある）。(c) 増幅の範囲、これも迎え角αₘₙに対し増幅の始まるkₖₙを示し、その範囲を明らかにしてある。

（2）性能曲線
揚力Cₚおよび抗力Cₖₙが迎え角αₘₙにより変化する関係すなわち曲線は、キャピテーション係数kₖₙによって変化する。これらは第3～7図（同11.7%）および第10～15図（同6%）に示してある。

（3）揚力係数のkₖₙによる変化
揚力係数あるひは抗力係数のキャピテーション係数kₖₙによる変化は、それぞれ第3～7図および第10～15図によってCₚ-kₖₙ曲線およびCₖₙ-kₖₙ曲線を引いてみると明らかであるが、ここには図面を省略した。これらの曲線からわかる注意すべき事柄としては、kₖₙの変化に際し、揚力係数に極大値の生すること、しかして厚比11.7%の翼の方が、その極大値を表わす方が空調であるが、厚比6%の方では相当著しく変わることである。

（4）3翼型の比較
1. 極曲線：これの比較は厚比11.7%に関しては第3～7図に示した。これによると大体いずれのkₖₙの値においても優秀の順に犬骨のものになる。

kₖₙ=2.5～1.6 クラック Y.H., クラック Y., R.A.F.6
=1.4～0.8 迎え角により異なる。
=0.7～0.3 クラック Y., クラック Y.H., R.A.F.6

（図面省略）
また厚比6%に関しては、第10～15図から同様に書き出すと

kₖₙ=3.0～1.0 迎え角により異なるが最大揚力最適は R.A.F.6
=0.9～0.7 迎え角により異なるが最大揚力最適はクラック Y.H.,
=0.4～0.2 クラック Y., クラック Y.H.,
R.A.F. 6

これによると厚比11.7%でも6%でも高揚力においてはクラック Y.の性能が優れていることがわかる。

2. 抗比最短の迎え角：設計においては、ある必要の揚力係数の値に対し避け得る抗比の値が問題になる。したがって最小抗比の近辺をねらって採用すべき翼型の形状を決定することは十分である。この抗比最小を与える迎え角αₘₙは気象中の実験では一定であるが、キャピテーション発生下においては抗力kₖₙによって異なってくるのである。このことは揚力の極曲線あるいは正確には数直線からαₘₙ=kₖₙ曲線（こことは極大)を引くと明らかであるが、この変化がなるべくkₖₙの小なるまで変化しないことは好ましいことである。この意味で優良
比較すると次の序列になる。

11.7% クラーク Y，クラーク Y.H. = R.A.F.6

6% クラーク Y.H.，クラーク Y = R.A.F.6

3. 発生状態：(a) キャビテーションの初生条件，

第5図 各キャビテーション係数における極曲線（kₐ = 0.9, 0.8）

第6図 各キャビテーション係数における極曲線（kₐ = 0.7, 0.6, 0.5）

第7図 各キャビテーション係数における極曲線（kₐ = 0.4, 0.3）

第9図 発生状態（発生条件，破壊危険範囲および激振範囲）
第10図 各キャピテーション係数における極曲線 \(k_a = 2.0, 1.8, 1.6 \)

第11図 各キャピテーション係数における極曲線 \(k_a = 1.4, 1.2 \)

第12図 各キャピテーション係数における極曲線 \(k_a = 1.1, 1.0 \)

第13図 各キャピテーション係数における極曲線 \(k_a = 0.9, 0.8, 0.7 \)

第14図 各キャピテーション係数における極曲線 \(k_a = 0.6, 0.5, 0.4 \)

第15図 各キャピテーション係数における極曲線 \(k_a = 0.3, 0.25, 0.2 \)

角に対してキャピテーション係数で與えてある）に関する3等型の比較は第2図（厚さ11.7％）および第9
既存翼型の翼列のキャビテーション性能（第1報）

滝知福三郎（2） 深沢定敏（3）

Cavitation Tests on Hydrofoils Arranged in a Straight Grate (Report 1)

by Fukusaburô NUMACHI and Sadatoshi FUCHIZAWA

1. 緒 言

軸流水中、軸流ポンプおよび船用推進器の羽根の設計において、従来は単独翼の実験結果を利用し、ただ翼の相互干渉に関しては理論をもって修正を施してい ることは想いの通りである。この『相互干渉の修正』は目下の處、ある特微の形状の翼に関する実験的研究の結果(1)で、一般に相当の厚比および曲比の翼型に関 して正しいものは可検討する余地残っている。また 前記理論値、抗力の増減に関しては何らの所見を与 えないのである。現でさらに翼列が水中においてキャ ビテーションを起した場合に対しては上記干渉係数の 理論値は適用できないのみならず、また実験的考察も ほとんど知見しない(1)。

よってこことは、既存翼型3種より、各種につい て、それぞれ翼列の際のキャビテーション性能を求 めたのである。

2. 実験方法および翼列

実験は既報の『実験キャビテーションタンク』(1)を使用し、揚抗力測定は筆者の設計による特殊のオラン ダスによった。実験に使用した翼列の弦長、翼幅は共に 100 mm であって、翼型は5枚を列べてあり、後流の 水路幅の方向を測定装置によって、無限翼列の比を求 るようにした。実験結果は既報(1)に述べた通りである。使 用した翼型は、クラーク Y 6％、クラーク Y H 6％