サイクロング集じん器の圧力損失に関する理論

（サイクロングに関する研究、第5報）

井伊谷 銘 一

A Theory on Pressure Drop of Cyclone Dust Collector
(Study on the Cyclone, 5th Report)

by Kōichi INOYA

Pressure drop of the cyclone is its important characteristic, and here the pressure drop is defined as the inlet static pressure P_i, when the exit pipe opens to atmosphere.

From many experiments of flow patterns in the cyclone, theoretical formulae of pressure drop are obtained, and an approximate formula is also given. Many experiments on pressure drop are done and discussed, and thereby the theory is verified.

This theory makes it easy to design a cyclone and to estimate its characteristics.

1. 緒 言

圧力損失はサイクロング集じん器の性能としては分離効率と共に重要なものである。すなわち圧力損失によって送風機を選択せねばならぬ、圧力損失とこれに伴う流量からサイクロングの所要エネルギーが定まるからである。前報までの気流状況の実験結果を考察から、サイクロングの圧力損失の理論式を導き実験結果と比較してみる。また圧力損失を計算する際の計算式を作り比較を行う。なお圧力損失としては一応出口側を大気開放としたときの入口側圧力（静圧）P_iを採用した。入口および出口における動圧は一概に小さいので余り問題にする必要はない。サイクロングを送風機の吸入側において吸入式で入口圧力を圧力損失として考えることはできないので、出口管の圧力損失を採用するのよいかが、出口管にはラセン流が存っているために損失が生じないので、出口管壁面に圧力 P_e を用いると出口側圧力はよりもかなり高くなり、圧力損失が実際に所要圧力より低く出るという欠点がある。またこの差圧と他者の入口圧 P_i とは一定の比例関係がある。サイクロングの種類によって変化するのもうなずけたわけである。

次にサイクロングの圧力損失は流量の大きい2乗に比例するが、送風機の性能は一般に回転数一定のとき流量の増加によって徐々に圧力は低下する。回転状態はそれら二曲線の交点として与えられるから、送風機の回転状態が少しへ変動して回転数が変わると、たとえ圧力も小さくても流量は余り変わらない。一方サイクロングの状態が少しずつ変化して圧力損失が変ったとき流量には相当の変化を生ずる。またサイクロングの圧力損失をのべるとき空気流量に少しあの誤差があるとしても圧力損失に相当の誤差を与えるが、圧力損失に少々の誤差があっても空気流量には余り大きな相違が生じないから一定圧力損失に対する空気流量を示すのが、一定空気流量に対する圧力損失を示すよりも誤差を少なくできる。

2. 概 論

圧力損失は回転流による損失力を加算したものであるが、まず気流状況を前報までの実験結果を基として次のように推定する（第1図参照）。

A. 入口風速 w_i なる空気流はサイクロングに流入すると入口管断面積 a と円筒部断面積 $\frac{\pi}{4}D^2$ の比によっ
d列すまたは減速され風速 w_1 となる。実際の流れの進行と共に徐々に w_i から w_1 に変化するので次項と同時に起こるわけであるが、これは主にはっきり区別して観察できない。

B. 風速 w_i なる流れは円筒部外側をらせん状に下降するにつれて円筒部との摩擦で円筒部下端に達したとき風速 w_2 に減速される。

C. 米角部外側をらせん状に下降するにつれて中心に近づくが、酸素膜のため自由变化など考えならせ径 r_3 なる位置で風速 w_3 まで増速される。出口管半
径の半分ぐらいまでは加速されてゆくが、後は上昇流となってらせん上昇とする。下降流から上昇流に反転するための損失も考えられるが、らせん角が小さいために余計に問題にならない。

D. 中央部のらせん上昇流は壁摩擦がなく、空気の内部摩擦（粘性）だけであるから、ほとんどの速度は減速されることなく出口管に達する。出口管に流入する際速度は変化があるが、これは本論では考慮する必要はない。

E. サイクロン内部で出口側圧力と等しい圧差を示す半径位置は円筒部を通じて得られる出口管素地座圧の 60% であることを、実験的に確かめられているから、円筒部壁面圧力は半径 0.66r_e から円筒半径 R まで加速力 (1/v^2) を積分した値で出口側圧力より高いことがになる。一方円筒部壁面圧力は上部と下部とではほとんど変わらないし、入口圧力もほとんど差はないので、上記の積分を円筒下部で行い、これを入口圧力ずなわち圧力損失 P_L としてもよいことになる。

なお出口系管の他に流体流においては半径 r_e の約 60% にて静圧 P_e が出口側開放圧力と等しくなることを考慮する必要がある。この計算の根拠を簡単な仮定の下で導出し、中心の静圧を P_e とすると次式を用いる。

\[P_e - P_L = \int_0^{0.66r_e} \rho \frac{v^2}{r} \, dr \] \hspace{1cm} (1)

ここに \(\rho \) は空気の密度、\(v \) は回転流速、\(r \) は任意の半径である。一方、通過圧力は小さく、ほとんど損失となるので無視して、\(P_e \) の平均値が出口側開放圧力ととり合うと考えると、開放圧力とそれば次式を用いる。

\[\int_0^{0.66r_e} \frac{v^2}{r} \, dr = 0 \] \hspace{1cm} (2)

上式より \(P_e = P_L \) と相当する半径 \(r \) を求めればよいが、\(P_e \) は一般には複雑な式となるので、簡単な \(P_e \) を \(r \) の直線式とする。

\[P_e = P_L = kr \] \hspace{1cm} (3)

これを（2）式とから次の値を求める。

\[P_e = \frac{k}{r} \left(r - 0.66r_e \right) \] \hspace{1cm} (4)

ゆえに \(P_e = 0 \) のときは \(r = 0.66r_e \) となる。

実際は円筒部近くでは \(P_e \) は直線関係より低下するから、これを考慮すると \(r/r_e \) は小さくなり、60% に近い値となる。

F. サイクロン上部の摩擦も考慮しなければいけないが、第3報でも述べたように上方を流れる空気量は少ないからその影響は小さい。また出口管のическом部摩擦も摩擦損失を与えるのはないが、これも実験上より影響が小さいので、すべての摩擦を含めて上部の摩擦値 0.66r_e まであることにして円すい摩擦に加算することにした。

G. 圧力損失として出口管壁面上静圧差 \(P_L - P_e \) を採用するときには、以上の考え方に基づいて適心力の積分を 0.66r_e の代わりにr_e まで行えばよさそうであるが、実際はr_e なる半径位置の流れは出口管に流入するとき速度にも大きな変化を生じ（流速損失と考えられる。）サイクロン内と出口管内ではかなり状態に差を生じるので、このようにして計算すると圧力損失に過小な値を与えてよさないように、むしろ実用上は前記の圧力損失 P_L の 10～40% 程度の数値と考えた方がより、ただしご imports が集じん機開閉（圧送系のとき）の影響をほとんど受けないので都合である。

3. 理論計算式

前項のような概念を実測値にてして理論計算式としてあらわすと以下のようになる。

I. 高圧部の拡大または細流流れ \((v_L \rightarrow v_U)\) 気流測定結果を整理すると第2図のようにになり測定値は

第2図　入口部の拡大または細流流れ関係

\(v_L \) ではなく、\(v_L \) と \(v_U \) との中間の値をあらわしてい

るので、これから \(v_L/v_U \) の関係を実験の上に推定した。式であらわすと次のようであるが、よく実際の結果と合う。

\[\sqrt{a/D} > 0.35 \text{ のとき } v_U/v_L = 1.40 \]

\[0.35 > \sqrt{a/D} > 0.20 \text{ のとき } v_U/v_L = 4 \sqrt{a/D} \]

\[0.20 > \sqrt{a/D} \text{ のとき } v_U/v_L = 0.80 \]

（5）

これも別に考察してみる。サイクロン流入後の流れの断面積を \(f \) とすると、流量 \(Q \) を次のようにあらわせる。

\[\frac{Q}{av} = f (v_L, f \text{ となる。}) \]

しかしながら \(f \) としては幅が \(\sqrt{a} \) に比例し、高さは \(D \)

に比例したらせんのビッチである長方形に近い断面をもつと考えるのが妥当であるので、\(f = \sqrt{a/D} \) とおくことができる。

II. 円筒壁における減速 \((v_L \rightarrow v_U)\) 空気流速を重量で示すと \(G = \rho Q = \rho av \) となる。ここに \(\rho \) は
空気密度である。なお r_1 は円筒形上部にて e_1 なる
流速の回転半径 (cm), r_2 は円筒形下部にて e_2 なる流速の回転半径 (cm), f_i は円筒形摩擦係数, R は円筒
半径 (cm), A は円筒形内壁全面積 (cm²), L は円筒
高さ (cm) とすと、ゆえに $A = \pi DL$ である。回
転モーメンタムのつりあいから壁面摩擦を考えて次式を
うる。

$$v_1 Gr_1 = v_2 Gr_2 + f_i \rho RA \left(\frac{v_1}{2} + v_2^2 \right)$$

ここで $k = f_i AR v_1/2 ar e_1$ とおくと、次式となる。

$$\frac{k v_1}{v_2} = \frac{r_2}{r_1} \left(\frac{v_2}{v_1} \right) + k-1 = 0$$

$$v_2 = \left\{ \left(\frac{r_2}{r_1} \right) + \sqrt{\left(\frac{r_2}{r_1} \right)^2 - 4 k(k-1)} \right\} / 2 k$$

(8) 式の計算図表を第 3 図に示す。一般に $r_1 = r_2 = R$
あるいは $r_2/r_1 = 1.0$ とおけるから、次式をうる。

$$v_1/v_2 = \left\{ 1 + \sqrt{1 + 4k(k-1)} \right\} / 2k$$

(8 a)

第 4 図 サイクロン円筒形壁面摩擦による速度
の減少斜め計算図表

また k の値を 1 項の式より求めると次のようにな
る。

$\sqrt{a/D} > 0.35$ のとき, $k = 0.7 \pi f_i DL/a$

$0.35 > \sqrt{a/D} > 0.20$ のとき, $k = 2 \pi f_i DL/a$

$0.20 > \sqrt{a/D}$ のとき, $k = 0.4 \pi f_i DL/a$

(9)

うず巻型入口と断続型入口との差は大きな影響を圧力損失に
与えないが、区別をしないで無視することもある。摩擦係数 f_i
は R_e 数にもよるが、壁面の状態にもよる。一般には一応平板
に対する値の 2 倍をとる。詳細は次項でのべる。また以上の
考え方を Stairmand (3) の方法と同様であるが、それを修正した
ものである。

Ⅲ. 円すい部の求心流におけ

第 5 図 サイクロン円すい部における速度指
数 n を求める計算図表

にてあらわれる増減が起こる。前項と同様に回
転モーメンタムの変化を考えて F を摩擦損失
として第 4 図より次のようになる。

$$Ge v_2 r_2 = G v_2 r_2 + F$$

$$F = 2 \pi f_i \rho v_2 a \sin \frac{\xi}{2} \left[1 - \frac{v_2}{v_1} \right]$$

ただし f_i は円すい壁面摩擦係数, a は円すい頸
角である。この式を計算して, $v_2 r_2^n = v_2 r_2^n$
を用
いると結局次式となる。

$$\sin \frac{\xi}{2} \left(\frac{v_1}{v_2} \right) \left(\frac{a}{2} \right) \pi r_2^n = \left(\frac{r_2}{r_1} \right)^n \left(\frac{R}{r_2} \right)^{2-n-1}$$

(10)

この式の辺辺を計算すると良い辺が第 5 図のように
計算図表として与えるから指数 n を求めることが
できる。またこれはサイクロン上部の摩擦損失
を考慮しなかったので、これを先にのべたように近似
的にとりあわせて、上部の面積を円すいの面積に加
えると与え $1/\sin \frac{\xi}{2}$ の代わりに $(1 + 1/\sin \frac{\xi}{2})$
なり、次式を与える。

$$a f_i \left(r_2/r_1 \right) \left(1 + 1/\sin \frac{\xi}{2} \right) \pi r_2^n = y \cdots(11a)$$

更に前項と同様に $r_2 = R_e, r_3 = 0.6 R_e$ とおけるから,
$x = r_2/r_3 = R_e/0.6 R_e$ と y と第 5 図を用いて n
を求めることができる。

円すい壁面摩擦係数 f_i は f_1 と同様に考えてよいで
ある。f_1 と f_2 を異った値とした方が実測値とよく
一致する傾向もみられるが、はっきりした基準もない
ので、一応次のようにして $f_1 = f_2$ を求めることに
する。すなわち第 6 図のような平板に対する摩擦係数
第6図 平板に対する摩擦係数（機械工学便覧）
数値の2倍を用いる。yre の数とは平板に対する
v_0/v_2 をつる。ただし I は流れを沿った長さである
ので、らさみ角 $\theta=10^\circ$ と仮定すると、$I=(L+H)$
となる。ただし $(L+H)$ はサイクロン全長である。

$R_e=6(L+H)v_2/v_0$(12)

そして第6図の f は流速に対する値をつるし、本文
の式に対してはすでに2倍値となっている。

IV. 压力損失 すでにのべたようにここでは出口
開口時の入口流速 P_0 を使う。

$P_1=\frac{R}{r_0^3} \int_{r_0}^{R} \frac{\rho v_0^4}{r} dr = \left[\frac{R}{r_0^3} \frac{\rho v_0^4}{r} dr \right] _{r_0}^{R}$(13)

回転速度 v_0 と全速度 v はほぼ等しいので、v_0 の
代わりに v を用いた。また $v_0r_0^2=v_0r_0^2$ であり、
$r_0=0.6r_0$ で v_0 なる速度をもつら次式をつる。

$P_1=\frac{\rho v_0^4}{2n} \left(\frac{R}{r_0^3} \right) _{r_0}^{R}$(14)

ゆえに前項までの結果をついてこの式によって
压力損失 P_1 を求める。

また別にベルヌイの式からも次のように同様な結果
を導きうるわけであるが、これはこれで損失が不明である。

$P_1+\frac{1}{2}\rho v_0^2=\frac{1}{2}\rho v_0^2+\text{loss}$

$P_1=\frac{\rho}{2} (v_2^2-v_0^2) + \text{loss}$(15)

この式で損失のないとき、(14)式で $n=1$ すなわ
ち自由うずに当る。

4. 計算例と考察

A. 計算例 No. 3 サイクロン（2号口管、30°
円すい、54 cm 円筒）についての計算例を示す。入
口流速 $v_0=10$ m/s とする。 $(L+H)=83$ cm、$v_0=0.15$
cm/s をつって (12) 式より

$R_e=\frac{1000 \times 83}{0.15} = 3.3 \times 10^6$

ゆえに第6図から $f_1=f_2=0.0037$ をうる。(5)式
から

$R_e=5.38, \sqrt{\delta D}=0.25, v_1/v_0=1.0$,
次に(9)式より $k=6.3 \times 0.0037 \times 54/54 \times 54 = 0.278$

となり、第3図または(8a)式から $v_1/v_0=0.82$
をうる。更に(11a)式より $y=20.6 \times 0.0074 \times 4$
$4.87 \times 0.62 \times 0.36 \times 0.4 = 125$ であるから、第
5図をつって $n=0.87$ となる。したがって
(14)式により圧力損失係数は次のようになり、
実測値の 7.9 とよく一致している。

$F=P_1/2 \rho v_0^2 = 0.87 \times (5.9 \times 0.87 - 1) = 8.2$

B. 風速すなわち R_e 数による圧力損失の変
化 風速あるいは入口風速 v_0 が変化すると
R_e 数が変わるのち摩耗係数が変化し、圧力損
失が風速の二乗に比例しない原因となる。した
がって圧力損失係数 F は一定ではないことに
なる。ゆえに摩耗には F は風速 v_0 を指標する必要が
ある。No. 2 サイクロンについての計算例を第1表
に示す。これは $n=2.13$ 乗に相当し、実際とも一致し
ている。

第1表 サイクロン入口風速による圧力損失
係数の変化（No. 2 サイクロン計算値）

<table>
<thead>
<tr>
<th>入口風速 v_0</th>
<th>5 m/s</th>
<th>10</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>摩耗係数 f</td>
<td>0.0048</td>
<td>0.0048</td>
<td>3</td>
</tr>
<tr>
<td>圧力損失係数 P_1</td>
<td>9.2</td>
<td>10.3</td>
<td>11.4</td>
</tr>
<tr>
<td>圧力損失 P_1</td>
<td>14 mm Aq</td>
<td>62</td>
<td>273</td>
</tr>
</tbody>
</table>

C. 摩耗損失係数の変化による影響 磨面のあら
さを含めて摩耗係数 f を変化させたときの計算例を第
7図に示す。すなわち f が2倍になると圧力損失は半
分くらいになる。これに対する実験は第8図のように
一定粒度の砂粒をパルサに内で内壁に附着させたNo.
2 サイクロンで行った。圧力損失は 0.5〜1 mm の砂
粒をつけたときには元の半分くらいになり、圧力損失
指數 n も 2.1 から 1.9 におさっている。砂粒の大き
第8図 壁面摩擦損失による圧力損失の変化（No. 2 サイクロン）

圧力損失は、余り顕著な差をもたらさない。円すい部や上部まで砂粒を附着させたときの圧力損失は特に少ない。これは一例にNo. 2 サイクロンの円筒部が長いためであろう。また砂粒が空気流によってだんだんと流れ下ると、圧力損失は上昇してゆく。一方、その砂粒が円すい部で回転して滞留していると摩擦損失がふえることになり、圧力損失が少しく下がる。これらのことから壁摩擦による圧力損失の低下が顕著であることがわかる。

D. 粉末濃度による圧力損失の減少　一般にサイクロンに粉末を供給したとき空気流のみのときよりも圧力損失が低くなる。実験結果は第9図に示すごくShepherd等の結果とも一致してサイクロンの形態や大きさにはよらず、相当の粉末濃度になると3穂近く圧力損失が低下する。この原因としては粉末の流動エネルギーの回収等もあるが、それは計算してみても小さい値であり、このような大きな圧力損失の減少の説明とはならない。これは粉末粒子が内部壁面に存在するために摩擦損失の増加したと同様になり、更に流体内部で粒子の存在のために内部摩擦の増加と考えられるので、これも加わって圧力損失低下をもたらすと考えられる。また浮遊している粒子はほとんどとも円すい部に回転しやすい粉が粉末であるときに圧力損失が低くなるのをめどに、この考え方の正当であることがわかる。

5. 圧力損失略算式

理論計算式はやや複雑であるので簡単に大きさから圧力損失を求める無次元の略算式を実験結果を参照して次のように作った。これは摩擦損失を一定とした場合にあたるので実際と合わない傾向があるのは止むを得ないが、だいたいの推定には十分使えるし、在来の式よりすぐれている。

圧力損失係数

\[F = P_1 \frac{1}{2} \rho v_i^2 = \zeta_1 K_i \cdots \text{(16)} \]

\[K_i = \frac{a}{d} \sqrt{D(L+H)} \quad \text{(17)} \]

\[K_2 = \frac{a}{d} \sqrt{D(L+H)} \quad \text{(18)} \]

\[K_3 = a \sqrt{D} \sqrt{L+H} \quad \text{(19)} \]

これを計算して実測の \(F \) をつかって \(\zeta_1 \) を求めるときだいたい普通の型式では次の範囲である（第2表参照）

\[\zeta_1 = 50 \sim 150, \zeta_2 = 30 \sim 70, \zeta_3 = 20 \sim 40 \]

これよりみると \(K_i \) はよいようである。\(\zeta_3 = 30 \) として \(F \) を求めれば普通型式でだいたい30〜40% 以内の誤差で実測値と合う。また円すい部長さ \(H \) として円すい母線に沿った長さをとる方がよいかもしれないが、実際はほとんど問題にない。

なお在来発表されている式としてはFirstのもののがよい。2表に \(F_i \) として計算である。しかし \(H \) の影響が強すぎるようである。その他端末、端部の式等もあるが、仮定が多い上に \(H \)や \(L \) の影響を無視していて不合理と思われる。

6. 結 論

実験結果を参照して圧力損失に関する理論を確立した。今まで不確実であった点はっきりとりし、サイクロンの設計や使用に便利となった。理論計算式は第2表のようによく実験と一致し、略算式も有用なものを作り得た、その他圧力損失に関する実験と考察を行った、今後は更に合理的な理論の発展改良と仮定の実際に対応した選定が研究される必要がある。

最後に実験装置の一部について便宜を与えて下さった水力実験室の方々と実験および整理を手伝ってくれた木村典夫君に感謝する。
第2表 各種サイクロンの圧力損失の実測値と計算値
×うず入口，○円形断面入口，F_m：実測値，F：理論計算値，K_1：断算式，F_4：First式

<table>
<thead>
<tr>
<th>サイクロン</th>
<th>D cm</th>
<th>a cm²</th>
<th>d cm</th>
<th>L+H cm</th>
<th>F_m</th>
<th>F</th>
<th>F_m/K_1</th>
<th>F_m/K_2</th>
<th>F_m/K_3</th>
<th>F_4</th>
<th>備 常</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>16.5</td>
<td>5</td>
<td>77</td>
<td>11</td>
<td>8</td>
<td>190</td>
<td>70</td>
<td>26</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>15</td>
<td>5</td>
<td>37</td>
<td>8</td>
<td>10</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>3p</td>
<td>18.2</td>
<td>20.6</td>
<td>5.1</td>
<td>111</td>
<td>7</td>
<td>8</td>
<td>80</td>
<td>40</td>
<td>21</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>3p3</td>
<td>7.9</td>
<td>2.7</td>
<td>10.2</td>
<td>1.7</td>
<td>2.1</td>
<td>90</td>
<td>40</td>
<td>21</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3p2</td>
<td>8</td>
<td>8.0</td>
<td>10.2</td>
<td>1.1</td>
<td>2.5</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>4.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3p1</td>
<td>8</td>
<td>8.0</td>
<td>9.1</td>
<td>3.4</td>
<td>4.0</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>4.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3p</td>
<td>10.2</td>
<td>1.8</td>
<td>8.0</td>
<td>1.1</td>
<td>2.5</td>
<td>80</td>
<td>40</td>
<td>19</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3p2</td>
<td>5.1</td>
<td>16</td>
<td>17</td>
<td>90</td>
<td>50</td>
<td>24</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3p</td>
<td>6.7</td>
<td>5.2</td>
<td>67</td>
<td>9</td>
<td>10</td>
<td>90</td>
<td>40</td>
<td>22</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3p3</td>
<td>7.9</td>
<td>3.4</td>
<td>3.4</td>
<td>4.3</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>6.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3p4</td>
<td>10.2</td>
<td>2.1</td>
<td>2.8</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3p2</td>
<td>5.1</td>
<td>21</td>
<td>18</td>
<td>100</td>
<td>50</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3p3</td>
<td>5.1</td>
<td>4.1</td>
<td>10</td>
<td>50</td>
<td>40</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3p4</td>
<td>5.1</td>
<td>4.0</td>
<td>4.0</td>
<td>4.3</td>
<td>80</td>
<td>40</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3p4</td>
<td>10.2</td>
<td>2.3</td>
<td>2.5</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4a</td>
<td>28.4</td>
<td>100</td>
<td>11.6</td>
<td>70</td>
<td>19</td>
<td>18</td>
<td>110</td>
<td>70</td>
<td>41</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>4b</td>
<td>6.4</td>
<td>57</td>
<td>56</td>
<td>100</td>
<td>60</td>
<td>37</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4a*</td>
<td>11.6</td>
<td>60</td>
<td>8</td>
<td>100</td>
<td>60</td>
<td>37</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>14.5</td>
<td>30</td>
<td>5.9</td>
<td>38</td>
<td>18</td>
<td>20</td>
<td>90</td>
<td>60</td>
<td>34</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>125</td>
<td>500</td>
<td>55</td>
<td>335</td>
<td>19</td>
<td>19</td>
<td>90</td>
<td>60</td>
<td>37</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>70</td>
<td>180</td>
<td>28</td>
<td>150</td>
<td>5</td>
<td>100</td>
<td>(100)</td>
<td>40</td>
<td>(18)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8-I</td>
<td>55</td>
<td>400</td>
<td>28.5</td>
<td>240</td>
<td>10</td>
<td>110</td>
<td>100</td>
<td>60</td>
<td>37</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>8-II</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>220</td>
<td>10</td>
<td>110</td>
<td>100</td>
<td>60</td>
<td>37</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>8-III</td>
<td>220</td>
<td>28.5</td>
<td>4.0</td>
<td>120</td>
<td>5</td>
<td>100</td>
<td>120</td>
<td>60</td>
<td>34</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>8-IV</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>120</td>
<td>60</td>
<td>34</td>
<td>120</td>
<td>60</td>
<td>34</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>9a</td>
<td>6.5</td>
<td>6.3</td>
<td>3</td>
<td>20</td>
<td>11</td>
<td>12</td>
<td>70</td>
<td>40</td>
<td>27</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>9b</td>
<td>6.3</td>
<td>3</td>
<td>7</td>
<td>10</td>
<td>40</td>
<td>30</td>
<td>40</td>
<td>30</td>
<td>16</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>14</td>
<td>45</td>
<td>7</td>
<td>40</td>
<td>14</td>
<td>15</td>
<td>50</td>
<td>40</td>
<td>25</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

注: (1) 昭和27年9月25日東洋文教名古屋地方協議会において講演。原稿従者 昭和27年9月29日。
(2) 菊谷, 名古屋大学工学部。
(3) Stairmand, Engng., 1949-10-21, p. 409。
(4) 橋本工学論, 昭32, p. 860。9。
(6) First & Silverman, Heating & Ventilating, 1949-7, 45, 7, p. 80。
(7) 京都, 京都大学化学教育, 8, 10-3, 315ページ (昭5)。
(8) 吉田, 第1巻, 講談社出版, 4, 14, 1ページ (昭27)
(9) 菊谷, 第1巻, 講談社出版, 18, 66, 90ページ (昭27)
(10) 菊谷, 第2巻, 講談社出版, 18, 69, 42ページ (昭27)
(11) 菊谷, 第3巻, 講談社出版, 88ページ
(12) 菊谷, 化学教育, 16, 8, (昭27-8) 231ページ。