は
4p = 0.000 06 kg/cm² に対し αH_f^3 = 0.5%,
0.000 2 kg/cm² に対し 3%, 0.003 kg/cm² に対し
20% となる。我々の場合、実際の圧縮上昇は後半に示
すとくらべてなりに高くなりながら、この原因による
損失もまた予期したほど著しいものではない。しかし、
空気抜き穴が不十分であるとこの圧力上昇は急に増加
して損失に影響を及ぼす。

第 1 表

<table>
<thead>
<tr>
<th>下部漏れ穴</th>
<th>全開</th>
<th>1/4開</th>
<th>1/2開</th>
<th>3/4開</th>
<th>全開</th>
</tr>
</thead>
<tbody>
<tr>
<td>U字管内頭差 mm</td>
<td>17.0</td>
<td>6.16</td>
<td>2.45</td>
<td>0.91</td>
<td>0.49</td>
</tr>
</tbody>
</table>

4p = p - p_0 - γh = (0.001 kg/cm²) × h

6. 結 言

著者は、ショアかたさはハンマの落高に対する軸上
りの高さの比率で示されるものと考え、これにくぼみの
関係を入れると、この比はブリネルかたさと弾性かた
さ(仮称)との比で表わされることを明らかにした。落
下するハンマに対する空気抵抗およびガラス管内の空
気を圧縮することによる圧力上昇は、空気抜き穴が十
分開いている限り、我々の最初予想したほど大きくな
く、エネルギー損失の大部分はハンマとガラス管の内壁
の接近による損失およびハンマと管内壁とのすきまを
逃げる空気の抵抗その他のによって起されるものである
ことを指摘した。

注：
(1) 阿和 27 年 12 月 2 日 第 2 回応用力学連合講演会において
講演。原稿交付 阿和 28 年 10 月 23 日。
(2) 正員、京都大学工学部。
(3) 未発表実験。大林、梅原、松島「測定かたさについて」
で、本誌 129 ページ参照。
(4) 中川、機械学会雑誌、18 同 68 号、129 ページ,
(昭 27-3)。

620.178.153.48

ショアかたさ測定値に及ぼす各種の影響に関する研究
（第 2 報） 押付力の及ぼす影響(1)

町田周郎(2)

Study on some Effects on Shore Hardness Number
(2nd Report) The Effect of Pressing Force of the Measuring Tube
by Shiro MACHIDA

In this report, the behaviour of the effect of pressing force of the measuring tube on Shore hardness number was investigated.

Under the general requests for the testing with the Shore scleroscope being satisfied, and especially attending to free from the effect of velocity of the operating handle with consideration of the result of the last report, using 3 Shore scleroscopes of D-type, and many specimens which were different in hardness or in material, hardness numbers were measured with varieties of pressing force from 0 to 75 kg.

As the results, the behaviour of the effect of pressing force of the measuring tube on hardness number was made clear.

The critical (minimum) pressing force to free from this effect was decided according only to hardness of the specimen and not to the material or the tester.

An exponential relation was existed between the critical pressing force and hardness of the specimen, therefore the critical pressing force increased according to hardness of the specimen.

This result was compared with the results published hitherto, and the latter were included the former but few cases.
1. 緒 言
試片の厚さ、重さ、あるいは測定機の仕上精度等がショアかたさ測定値に影響を及ぼすことはすでに古くから知られ、これに関する研究も内外に少なくない。しかし、そのほとんどがC型試験機についての結果であってこれをそのままD型の場合に適用することに対してはかなりの検討を要する。そこで、試験機の測定筒が試料を押し付け力の大小がショアかたさ測定値に及ぼす影響に関する研究は、C型を用いた従来の研究の中には見あたりないようである。D型については最近総合科学者がこれを指摘し、同氏の研究(3)および吉沢氏(5)の研究のことに対しもあらゆる程度の指針を与えている。

著者はすでに主題の研究の一環として、前報(5)において、D型試験機の機構操作方法の回転速度がその操作法いかんによっては測定値に及ぼす影響の少ないうことを指摘し、その影響のもとを明らかにすることとともに、正しいかたさ数が得られるための限界（最高）速度を示し、これをショアかたさ試験法に対する注意事項の一つとして更に付加すべきであることを述べたのであるが、本報においてはショアかたさ試験法に対する従来の各種の研究法をも明らかに、特に前報の条件が十分満足された状態のもとに、測定筒操作用ハンドルの回転程度、すなわち試料に対する押付力の大小がショアかたさ測定値に及ぼす影響の如何を調査し、その結果をすでに発表されている前記同氏の研究結果(3)(5)と比較検討した。

鈴木氏は同氏の研究(5)において、軟炭素鋼、軟

<table>
<thead>
<tr>
<th>番 号</th>
<th>材 質</th>
<th>ロックウェル</th>
<th>ビッカース</th>
<th>ショアかたさ</th>
<th>直 径</th>
<th>厚さ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RC60</td>
<td>C59°5〜60°</td>
<td>676</td>
<td>79°5〜80°</td>
<td>46.5</td>
<td>9°70</td>
</tr>
<tr>
<td>2</td>
<td>RC50</td>
<td>C49°5〜50°</td>
<td>478</td>
<td>63°5〜64°</td>
<td>46.6</td>
<td>9°66</td>
</tr>
<tr>
<td>3</td>
<td>RC40</td>
<td>C39°5〜40°</td>
<td>351</td>
<td>48〜49</td>
<td>46.6</td>
<td>9°65</td>
</tr>
<tr>
<td>4</td>
<td>RC30</td>
<td>C28°5〜30°</td>
<td>273</td>
<td>38〜39</td>
<td>46.6</td>
<td>9°67</td>
</tr>
<tr>
<td>5</td>
<td>RC20</td>
<td>C20°5〜20°</td>
<td>213</td>
<td>30〜31</td>
<td>46.6</td>
<td>9°67</td>
</tr>
<tr>
<td>6</td>
<td>RB90</td>
<td>B90°〜92°</td>
<td>178</td>
<td>25°5〜26°</td>
<td>46.8</td>
<td>9°50</td>
</tr>
<tr>
<td>7</td>
<td>RB80</td>
<td>B80°5〜82°</td>
<td>150</td>
<td>22</td>
<td>46.8</td>
<td>9°50</td>
</tr>
<tr>
<td>8</td>
<td>RB70</td>
<td>B70°5〜72°</td>
<td>136</td>
<td>20°5</td>
<td>46.8</td>
<td>9°50</td>
</tr>
<tr>
<td>9</td>
<td>RB60</td>
<td>B60°5〜63°</td>
<td>117</td>
<td>(18)</td>
<td>46.8</td>
<td>9°35</td>
</tr>
</tbody>
</table>

I	10	HCS-1	高炭素鋼	238	34	42°8	10°97
	11	MS-2	鋼	143	21〜21°5	42°3	10°16
	12	CI-1	鉄	169	25	47.7	8°76
	13	Cu-1	銅	100	45°4	9°24	
	14	B-1	黄鉄	92.1	45°5	11°88	
	15	D-2	ジュラルミン	119	43°7	10°14	
	16	Al-2	アルミニウム	33.7	49°8	10°35	
	17	Z-2	鉄	47.1	49°6	12°20	
	18	T-2	鋼	9.2	48.1	12°21	

備考

SAEハンドブック(1952)によると
表中、第1群に属するものは材質いずれも鋼であろう、ロクタックエッチフライス標準片にともなって電気的なかたさのものを選び、第2群に属するものは、高炭素鋼、軟鋼、鉄鉱の外、鋼、黄鋼、ジュラルミン、アルミニウム、亜鉛、および鋳鉄等主として材質の異なるものを選定してある。

実验用の試料はいずれも、その測定面表の電圧（電圧）が均一であるか否かを確認するため、あらかじめ試験片についてビッカースかたさを測定、かたさを試料面の一部で同程度であることを確認した。そのばらつきの程度はシーケーション数に換算して、最大約10程度であった。

したがって、今回実験に使用した試料全体について、かたさ数のばらつきはほとんど無く、測定結果を比較する場合も、測定値に補正を行うことはしなかった。

各試料の測定結果はいずれもペーパー、酸化クロムにより、顔面近くで十分なものかに層されている。

試料の厚さ、および重さを表に示されたとおりであるが、測定に際しては従来の研究結果を参考とし、これらをいずれも重量約0.8 kgのスダレを使ったあらかじめ試料の表面に覆った保持、試料の厚さ、重さの影響を一応無視するようにすると同時に、試料の周辺近くで測定する際に考えられる周辺効果（end effect）の影響をも無視するよう考慮している。

また、操作ハンドルの回転速度は前報の結果を参考として、これを20回/分に一定とし、その影響を十分無視する範囲にとった。

以上のごとく、試験片に対する調査の注意事項が一応十分満足すべき状態にあるが、かつ操作ハンドル回転速度が、かたさ測定值に影響を及ぼさないうちの条件のもとに、測定値が試料測定面を抑え付ける力の大小がかたさ測定値に及ぼす影響のことも考えた。

3. 実験結果

測定結果を整理して、第2～5図に示す。すなわち、第2、3、4図は第1群試料に対する、また、第6、7、8図は第2群試料に対する測定結果をそれぞれ試験機ごとに整理したものであり、第5、9図はそれぞれその平均曲線を示す。

これらの観点を見ると、全体的に次のような傾向が認められる。

すなわち、それぞれある一定の押付力（限界押付力）を基として、それ以下の範囲では押付力の値にかかわらず、かたさ測定値がいずれか一定の値を示し、その材質の正しいかたさ数を示し、それ以下の範囲において、押付力の減少とともに順に低下を示している。

このような現象は、押付力が小さいため受舌と試料との間にすぎずを生ず易く、ダイヤモンド錐の主たる衝撃力に試料を押す力を与えないだけでなく、更にこれが測定に影響を及ぼす機械内部機構とは同一のものとするため、錐の反対側のエラネルギーの一部が消費され、それだけダイヤモンドの凸面変形が少なくなるためである。したがって、その影響は押付力の小さいほど大きく、押付力零の場合であってもある一定のところで止っている。

また上記影響の程度は試料のかたさの大きさがどう影響するか、正しいかたさ数と最低のかたさ数との差も試料のかたさに比例して大きくなっている。このような事実は各試片の表面の影響である。

次に、主としてかたさの異なるものを選んだ第1群試料の測定結果（第2～5図）を見ると、限界押付力は試料のかたさに応じて変化し、試料のかたさの大きなものほど、その値も大きとなっていることが認められる。

また、主として材質の異なるものを選んだ第2群試料の測定結果（第6～9図）を見ても、特に材質の違いによる傾向の相違は認められない、つまり上記同様、限界押付力は試料のかたさに応じて変化し、かたさの大きなものほどその限界押付力も大きとなっていることが認められる。

次に用いた3個の試験片についての測定結果を比較
にして見ると、試料ごとに各曲線はほぼよく一致し、限界押付力の値もまたほぼ一安定となっている。そこでこのたびの実験に用いた3個の試験機の測定結果のすべてを、それぞれの試料ごとに平均して示すと、第4図（第1群試料）および第5図（第2群試料）のごとくなる。

この両図を見ると、限界押付力は試験機および材料の種類にかかわらず、試料のかたさののみに比例して変化し、かたたもほど大なる押付力要し、やわらかいほど押付力は小さくてよいと言う前述の事実が一層明瞭となる。

この現象は前報の操作ハンドル回路速度の及ぼす影響のもとより全く対照的であるが、これは両影響の機構を考えればむしろ当然のことである。

以上の結果は、すでに述べたごとく、試料の厚さの影響が全く含まれない条件のもとに得られた結果であって、試料厚さに変化ある場合におけるおのおのつから超を異にするであろうことは十分予想される。

このような場合についてはおいて第4報において報告する予定である。
このたびの実験に用いた各試料のかたさ数と測定結果より求めた限界押付力をの関係を図示すると第10図のごとくなる。

両者の関係はこの図によって一層明瞭に示される。同図に見るごとく、両者の間にはある幅をもった指数から数的な関係があり、かつ、この幅が試料のかたさ数に応じて順次大となっていることがわかる。すなわち、かたさ数の小なるところで狭く、かたさ数大なるにしたがって広くなっている。換言すれば、限界押付力の値が試料のかたさの大なるものほど広い範囲に分散し、ばらつきの程度が大となっている。

押付力の影響を十分防止するためには、ここに示された上記の曲線以上の押付力を用いるべきである。

第10図には、前記鈴木、吉沢両氏の実験結果
より求めた限界押付力も同時にこれを示し、その比較を行っている。

ここに鈴木氏の実験は押付力が比較的小さい範囲の測定に止まり、また吉沢氏の実験では押付力がかかなり広い範囲にみられる。鈴木氏の試験装置が同じ鉄の2例を除けば、両氏発表の結果はいずれも上記曲線の範囲に入り、本報の実験結果よく合っているものと考えられる。

4. 総括
以上の数値のD型試験機およびかたさ、材質の種々異った多くの試験によって行った実験の結果、測定値が試験装置を押付ける力の大きさとジャックかたさ測定値に及ぼす影響をも明らかにした。すなわち（1）全般的傾向として、ある一定の押付力（限界押付力）を境として、それ以上の範囲においては押付力の大きさにかかわらずかたさ測定値は試料の正しいかたさ数を示すが、それ以下の範囲においては押付力の減少とともにかたさ測定値は順次低下する。

（2）この影響の程度は試料のかたさに応じてはなはだしくなり、限界押付力もまたかたさに応じて大となる。試験片および材質の違いによる相成を認められない。

（3）この限界押付力と試料のかたさとの関係は、ある幅をもつ簡単な指標でその関係を表しうる。かつこの幅は試料のかたさが如何なるに従って順次大となる。

（4）従来の研究結果と比較検討を行った結果、従来の研究結果は極く少数例（2例）を除けば本報の結果よく合うことを示した。

（5）具体的には、ジャックかたさ数30に対して14kg、50に対して18kg、以上の押付力があれば正しいかたさ数の得られることを示し、更にジャックかたさ計最大目盛（140）のかたさのものでも正しいかたさ数を得るためには25kg以上の押付力があれば十分のようなである。

注：
(1) 昭和28年10月17日山崎地方試験日に於いて講演、原稿受付昭和28年11月2日。
(2) 正員、京都大学工学部。
(3) 鈴木、機械学会誌第34号、14巻47号、I—97ページ（図23）。
(4) 吉沢、機械学会誌、54巻392号、360ページ（図21—7）。
(5) 町田、機械学会論文集、19巻47号、1ページ（図23）。
(6) 以上に述べた試験結果は、他者の研究書、語石製作所製品書（反復型硬度計使用法）等では0.1kg（11b）；上田、製鋼研究、180巻、27ページ（図17—7）では0.225kg（11b）；吉沢、注（4）では0.1（0.075kg）以上も必要である。
(7) 注（4）の製鋼研究における試料の厚さに関しては、J.N.Greenwood、Metal Industry、Vol.12、No.22、p.22（1918）；Blenkern、Journal of Institute of Metal、No.25、p.345（1932）；F.S.Tritton、Metal Industry、Vol.13、p.361（2012）；Rapatz und Fischer、Stahl und Eisen、Bd.46、S.1437（1926）；他、金属の研究、5巻8号、314ページ（図3—8）；上田、製鋼研究、180巻、27ページ（図17—7）；吉沢、注（4）の、等。
(8) 山本、隆、興田、精密機械、9巻7号、467ページ（図17—7）；上田、製鋼研究、180巻、27ページ（図17—7）；