ポンプの最近における動向

日立製作所亜水工場 寺田進

（1）まず小型・大出力のポンプの展望から始めてみよう。最も有名なものとして、アメリカのグランドクーレールリダイヤムの65000 HPポンプが挙げられる。これは鋼管用のもので、各ポンプの仕様は2450m³/min×945m×200 rpmである。すでに6台が運転に使用されているが、将来さらに6台増設される。このポンプはあらゆる意味において近代ポンプの親ということができる。祖父は1940年ごろにアメリカ合衆国のノンデルホームで、この親子を一転機としてポンプ界は大きな飛躍を始めている。そしてポンプ技術の開発も、欧州方面からアメリカに移ったといっても過言ではないようである。

近代ポンプの研究には、この親子の調査をするのが最も近道であり、また、必要があるとからなるものである。したがって、それらの生い立ちを洗い出そうとしてもむだなことはないと思う。ロスアングルスを中心とする南部リトルファーム地区、300 マイル離れているコロラド川から水を供給する計画を立てたことに始まる。1933年にハサタの工場研究室にてポンプ実験をし、国内の各学者および有名なポンプ業者等多数協力のもとに研究を開始。従来のポンプの基礎を破って型を洗い出し、1935年に建てられたポンプ実験所を作成し、最低保証費が88％に対し、実際の効率がそれより1％増じることで50000ドルの賞金を出すこと約束し、40000～125000 HPのポンプ計45台が一時、工場社3箇所に分割発注され、戦争前からの完全完成している。このポンプの成功が刺激されて、1939年に同研究所でグランドクーレールリダイヤム用のポンプの試験・研究が始まり、後にかつてモデルポンプの作り直しなどをあって1946年に第1期ポンプ6台を有名にするポンプの研究の主要部設計と別水準業者の強化計画と製作との共同作業として発達された。以上のように各ポンプ共に実に長い年数を経ての徹底した基礎研究によって新しい理論の発見と、その実際製作に国内のあらゆる関係者が一丸となって協力していることとわからやすい限りである。またグランドクーレールリダイヤム用ポンプは完成後揚水機に幅員ある運転条件のあることを見発され、これだけの間際に協力して解決してしまっている。これらのポンプは、すべての角度から検討され、おおはだしい研究成果が次々と発表され、それぞれ研究の、いまだに継続されるっている。世界中の関係者に与えた効果は満ち知れぬものがある。

このグランドクーレールリダイヤムポンプについては、本邦にも多いは紹介されているが、ボリュームポンプと書かれ、ターピンポンプと誤されたものであるが、そのパラメータは、一方でポンプが適切に報告されるような現象——これがポンプの最近の動向の一つであろう。そしてこのポンプは二重ボリューム・キャビンを持つが、羽根車を用いて6枚の羽根の短い簡単な形の固定案内羽根が付いている。しかしこの羽根はスチーム機と同一のもので、羽根車より非水素の大まかな整流をしているのが過ぎ、むしろケーシングの補強がその目的である。アメリカにおいては単段のポンプはもとより、多段になっているケースのないボリューム型だけを使い慣習が行われてきたが、近ごろは二重ボリュームの場合には段階に従って多段に巻き始め内径の小さな、いわゆるターピンポンプに似た形をした二重ボリューム式を採用するようになった。

しかし欧州では相変わらず案内羽根付のいわゆるターピンポンプの使用が強く、殊に高揚程ポンプにおいては絶対的である。アメリカにおいても、近ごろ高揚程ポンプにはターピンポンプの方が共通であるという意見ももちろん現われているが、その理由は不測の案内羽根の研究①などもポンプ関係者に熱心に読まれているが、結局はボリュームとターピンの中間ともいうべき二重ボリューム型に落ち着くのであるらしいと思われる。

グランドクーレールリダイヤムのポンプは、保証効率が87％であったが、一部試験において90％を越え、実物は91％4％で、類似の大型ポンプには、トーランツポンプ場②の二重ボリューム式揚水単相片吸込型ポンプ（22500 HP）6台が、有効率は88％5％に達した。

以上のポンプはいずれも灌漑用であるが、所要動力の大きなものは揚水発電所用ポンプである。沼沢沼発電所に国産の水理学の研究者（47.4m³/min×211.2×210000 kW）のポンプ2台③がすでに付けられたのは約2年前であったが、このポンプの現地効率測定は87％を示して、同形式の欧州でかって作られたものは追い越した。

この種ポンプは、戦後欧州において62000 HP、80000 HP④、235000 HP⑤などのものが作られており、アメリカにおいても134500 HP⑥その他の作が作られた。昔に比べてポンプの効率が向上しているので、ポンプ用動電機への出力と水力発電機の出力ととの総合効率が約70％に達するに至り、1935年ごろ以来一時見られていた揚水発電所の浮遊脚を除くに至った。しかし経済的に一層有利なものにするには、
ポンプと水車を併用する従来のものから、同一機械が両様に兼用される可逆機械に移らなければならない。この研究は水車側の人々によって永久に行われていただかねがたい（1)が、また、前記グランドクリーニングポンプの水没防止その他ためのモデル組合研究（2)に際して、良い水車は必ずもし良いポンプにはならないが、良いポンプは必ず良い水車になるという水力学上の根本原理を実証し得る機会を得たので、この可逆（3)の進歩は急に実現した。ブラジルのサンavanaughにおいて1900HP3台、アメリカのフランクアイアンにおける12000HPなどの可逆機の運転に引続いて、TVのハイフォッシュダムの12000HP（4)のものが1955年完成の予定で工事が進められている。ポンプとしての仕様は、6600m3/hr×62'5m×106rpm×1020000 HPであるが、揚程は41～77mの範囲内に変化し、最大水流量は880m3/hrに及ぶ。保証効率はポンプとして90％、水車として89％である。

さらに新しい計画としては、エリーガ湖発電所（5)のものがあり、これは6台の大型可逆機を使い、総出力5万HPに達するものである。ポンプの揚程は228～244mの高いもので、屋外発電所でとされる。この他に、南チキサ地方の階層式発電所群やミサバラ発電所で計画されている、カナダ側およびアメリカ側のそれぞれに約20万HPの発電所を作る計画中に兼用機が含まれている。

以上の大型ポンプに共通する事柄は、振動、キャピテーションおよび水力の諸問題である。水車と異なって最近に大型機の実現が盛んになったポンプでは、このような特異現象に対して、モデルと実物との間の厳しい関係がまだ明らかでない。しかしグランドクリーニングポンプに関して発表された各種報告（6)は、これらの現象についての一般ポンプの関心を強め、たとえば、本邦においてさえ、遠距離送電水圧利用ポンプには非常に普通の水圧発電装置を附属させることが常時となっている。経済と安全の両面から côtoryの範囲を出すためには、関係者の今後の努力が必要である。

（2）次は高圧のボイラ給水ポンプについて述べてみよう。ここ数年東北においても火力発電所の蒸気圧力が急に高まり、それに伴ってポンプも今までは高い圧力のものを必要とするに至った。80～90kg/cm²というものは完全に国際化されるようになった（7)が、要求はさらに130kg/cm²に達し、これ1000HPを越えるものがあるが国内で作り始められている。このようなポンプにおいては、材質上、高温、高圧、高速運に耐えるように考慮する（8)だけではなく、水圧力がかかる時、みかねてないかの防護な条件で高い効率を発揮させるために、羽根車の羽根の枚数を減らして摩擦抵抗を減らし、精密鍛造によって羽根の厚さを薄くかつ表面をなめらかにし、一方それなりに角度を変改し、複雑なボリューム内表面を機械仕上げによってなめらかにかつ正しい寸法とするなどあらゆる努力を払うが、根本的には圧力設定用機械を多用するか、かつ厚質測定にも便利なステンレス製の発電用羽根車およびカップリングなどの使用を徹底的に測定を必要とし、それによって得られた結果を科学的で現実に生かすために抵抗しているのがアメリカの一層ポンプ業者の現状である。

筆者がハサデナの研究所およびアメリカの各業者工場で見たところによると、以上のような流れの基礎研究（たとえば自由圧発電の研究（9)）が公立研究所で行い、同一研究所に対して幾つかの業者の協力によって研究を委託し、全体としてみてはならない、つまり必要に要張りのない方法を実行している。なお発電よりの委託研究も有力なもののように見受けられた。

モーターポーラの採用には、350～385kg/cm³のポンプを必要とし、增速機器装置によって15000rpm近くの回転をするポンプの研究（10)も続いている。

（3）低揚程ポンプにおいては、高速プロペラポンプのためのキャピテーション研究（11)が大いに進められているが、案内羽根付の斜流プロペラポンプの発展は物すごく、高揚程流体プロペラポンプ、低揚程流体プロペラポンプの範囲はこの十年間にほとんどこの斜流プロペラポンプに置き換えられてしまった。昨年度には南アメリカの型の直径4m50cmのものが推え上げられたが、このものは効率が良いので、軸流多段としてかなりの高揚程用にも応用されている。

極低揚程の軸流プロペラポンプはポンプ自身の効率を高めるばかりでなく、吸・吐管路の抵抗をも凝縮の注意のもとに低めねばならない。そのために固定または可変式の斜流ポンプも次第に採用されているが、高い回転数で振動ずに運転するためにには、回転体の口のむき合いを正しくするだけでなく、各羽根の仕上寸法を密に守らねばならない。高圧蒸気プラント水車の製作技術などがポンプにも取り入れられつつある。

（4）最後に、特殊ポンプについて一例しよう。金属、非金属などの材料、精密工作法の発達により、特殊ポンプについて従来夢想に過ぎなかったことが今や実現に移り、構造にまで革新が行われつつある。たとえば高温膨張係数の小さいパラシュームを用いるドイツ製造用に欠くことのできない発電ポンプ（12）材料となり、ステライトなど特殊材およびタンク製のリング群の組合わせによるメタルカルシループは、高圧蒸気または流体圧を受けるポンプあるいは保守を容易にしたい小型ポンプや可能でポンプのパッキン管に使われて来た不適合が、また流体の真の伝播の装置に使われる小型発電用圧縮機は1800rpmの高速において70kg/cm²を超える高圧を発生するのが普通であり、小型のラジアルプロペラポンプは200kg/cm²の高圧を1800rpmで生じ得るようにになった。
脂や、その他の合成ゴムは、各種ダイアフラムポンプや、ゴムチューブ式ポンプをそれぞれの用途において理想的なものとまで改良して、酸、アルカリ、食料および摩擦性固形物含有液などの処理に革命をもたらせている。紙製パルプ液は、その物理的特性を過発の結果、従来のポンプに少ない改良を加えるだけで従来可能であった最大流量の2倍くらいのものをも送り得るようになった(2)。欧州およびアメリカで改良されたプレードレスノンクロックポンプ(2)は、吸、吐管を通過するものは、何度も羽根車内を完全に通過するようにになった。管内面に施された各種プラスチック類は、ポンプの内部にまで進出して、耐摩、耐食、耐圧、耐損性の強いポンプを生みつつある。

強力な電磁ポンプは原子工場において溶融金属の移動に活用されて一般ポンプの将来の道を示している。

文献

Escher Wyss Mitteilungen (1941) p. 115.
Allis-Chalmers Sales News (1953-11).
Power (1953-4), p. 84.
Power Engineering (1950-7).
(18) 文献 (1) より (3) 並びに
L. J. Karassik: Power Plant Engineering (1944-12～1945-7).
(23) C. Pfleiderer: V. D. I., Bd. 92, Nr. 23 (1950).
C. Pfleiderer: Die Kreiselpumpen 3 Aufl.
(24) 特許出願公告, 昭 27-4533.
(25) 特許出願公告, 昭 28-5840.
Escher Wyss Mitteilungen (1946/47), p. 27.