まえがき
「工作機械はあらゆる生産手段を製作する最も基本的な資本財である」とはたびたび引用される言葉であるが、すぐれた工作機械を確保し、さらに進んで自らの工作機械をもつということは、一企業はもとより、ひいては一国の繁栄をもたらす大前提である。
物を作ることが目的である工作業機の価値は、次に掲げる五つの条件を満足する程度で決められねばならない。
(1) 工作精度　その工作機械で加工した品物の精度
(2) 生産能率　単位時間、単位馬力当たりの切りくずの量
(3) 順応性　融通性と言ってもよい、工作物の形状、大きさ等が変えても加工に不便や困難を伴わないと、(flexibility)
(4) 運転および保守の費用　高価な機械および作業員を遊ばせないこと、作業員を減少し得ること等
(5) 価格　これらの条件の内には列挙しないものもあるが、各機械製造者はバランスをどこかに置くかに苦心しているように思われる。つぎにこのような観点に立って最近の工作機械を眺めてみることとする。

生産型ジグ・ジグ盤
エリコンがフロジクション・ジグボーと称するラジアルボール盤型態の工作機械を始めたのは相当以前のことであるが、近所はデリーニ社のジグ型がきっかけとなり、形態は異なるがこの種の生産型ジグ・ジグ盤が大小さまざまな姿で出現した。使用者側の要望がそこまで上るとともに、普通作ってもその程度の精度をもつ工作機械ができるようになったためと思われる。

事前選択方式
工作機械の速度を変える方法として、運転中に次に予定した速度にダイヤルの目盛を合わせておき、なんらかの指示をすれば（たとえば起動停止レバーを操作する等）今セットした速度に変更が行われているときわめて便利な方法が、広く採用されるようになり、従来浪費していた変速のための時間がほとんどなくなっ

本 田 目 篇

工 作 機 械 に お け る 最 近 の 傾 向

速度、馬力および剛性
工作機械と工具とは常に追いつけつつ進歩をしながら産出される新しい工具材料の出現に刺激されて、速度がだんだん高まりつつある。昨年の東京国際見本市に出品されたVDF盤[4]は 5,600 rpmであったが、実験用には 10,000 rpmの旋盤[3]も計画されている。内部削切盤のスビンドルは普通は高速であるが、最近は 10万 rpmを越えている[4]。このような高速を実現する裏には、主軸の設計、融解およびその潤滑、運動機構および電動機（特に高周波電動機）あるいは動的バランス等多数の問題解決の苦労があったようである。

主運動速度の著しい向上を見せたもののに平刃盤がある。最大のものは 100m/minをこえるが、普通の行程の速度で構っているわけである。駆動を上げるためには主軸速度はさらに増大されているが、往復でも切りくずの量を増すためである。このような工作物をこのように速さで往復させるためには、潤滑の問題と同時に駆動電動機の加速制御能力の問題が解決されなければならない。

フライト盤においては、主軸速度はもちろろんであるが送り速度が著しく増大し、常用送り速度の最高は以前の6,000 mm/minに達している[4]。これらの速度上昇に伴って当然ながら駆動馬力が大きくなり、しばしば前までパイント一本に対し最大15 HPであった旋盤が30～50 HPとなっている。また高速化に伴い剛性も増大し、機械の形態がブームグリミックになり、機械の大きな割合にそれぞれで処理しうる物情が小さいのが目立つようになった。

鍛 面 研 削
研削は一般加工の最終工程であるか、さらに高級の仕上にはつりは超仕上、ホーニングまたはラッピン

*本稿受付、昭和33年6月3日。
**氏名、機械試験所（東京都杉並区住吉町132）
精度のきわめて高いという特徴（製造、ミクロン単位の切り込みをきわめて安定かつ円滑に行う機構、および研削後の表面滑らか性がもたらした成果である。この機械的研究値を超え上やホールショットを駆逐するだけはいかが見える。）

プランジカット、自動寸法および自動サイクル

最近プランジカット研削によって端付軸やその他の輸配を仕上げることが行われ、200 mm x 約2 mの長さのものにまで適用されて生産性を著しく向上した。このために機械は重厚大馬力になり、といいのない形状をついた。

内部研削にはあくまで自動寸法や自動サイクルが行われていたが、最近は円筒研削や平面研削にも自動寸法が行われ、加工中に予定寸法に仕上がると機械が自動的に停止するようになった。さらに、自由の急速な前後、巻きおよび上仕上げ、スパーカル研削ならびに急速選択を自動化に付して停止する自動サイクルを併用して能率を上げたようになった。

自動サイクルを従来して行い、サイクルプログラムを決定した鍛錬して工程の管理を完全に行うことを考えた機械をもつ。

ならいおよびオートメーション

工場機械の自動運転は自動車の昔から実現してはいるが、制御スケムの設計、製作および調整がやさしいかで融通性を欠くために、専用機としては広く用いられるが、従来としては不便である。最近マイクロコンピュータを利用して試作の断続によって電気的に制御することと行われ、その位置を変えるだけで工場機械や工程順序の広範囲な変化に応じることができるようにになった。（1）また、一方、簡単な油圧サーボを応用したならい装置、見本あるいは模型をモデルにして製品を作り出すことができ、カムをくらべてはどんな有用性が大きく、二つの者が不なってならい刃物を自動サイクル制御を行う例が多く、さらにこれに普通刃物台やインフレード刃物台を併用して融通性をもたせるのが普通になった。（1）

油圧ならいはフライス盤に取り入れられて形影盤として発達した。

大きな立野旋盤のないこととならず、管路の制御の関係からであるか電気式のない方が多く用いられている。

産業の他の方面で発達したオートメーションを工場機械にも適用する研究がMITを初め各所で行われ、あらかじめ計画された工程順序に従って自動御制される工場機械が発表した。

この方法は制御の方からは、ディジタル制御とアナログ制御だけのものに分けられ、工場機械の方からは刃物のたどる輪郭を制御するものと刃物の停止する空間位置を制御するものとにわけられ、制御の情報を伝える媒体としては穴あきテープ（2）、穴あきカードである穴あき磁気テープ（3）、またはドラムが用いられる。磁気テープまたはドラム（4）を用いたものは、記録再生方式と称して初めに工具の操作を記録しておく、つぎにその記録から逆に機械を制御して最初の操作を反復させるものもある。

複合機械および多面機械

工作物が大形になると段取りに時間がかかって、またいくら時間をかければも段取り精度を高ることは困難である。したがって最近の大形工作物には二つの異なる傾向がある。その一つは多面化であり、他の一つは複合化である。

多面化は昔もラジアルポール盤で行われたことがあるが、最近の多面盤における平割り盤のよう、一方で工作物の段取りを念入りに行っている間に他の面で別の品物の加工を行う類の、受どめの面を2個所以上にしたのもである。これに対して、1回の段取りでできるだけ多くの加工を行う方式で進んだのが複合化で、これにうえ取り装置の例であるが、各種アタッチメントを取りつけることにより、アリス削りや、中央軸に直角的な方向の中ぐり他種の加工を可能としたものがこれである。

むすび

以上で最近の工作物に見られる傾向の一つの断面について述べたが、これは高性能の機械型工作機械（5）（言葉が変であるが）がふつうの目を失い始めたらようである。もっと重要なことを要していないかを恐れると同時に、記述が表面的、抽象的で細部の説明ができなかったことを残念に思っている。

注

(1) 本文の例のほかホーグル、アシェル、アスケ、新日本工機等が発売している。
(2) 心高 225 mm である。
(3) Machinery(1), 91(Dec. 27, 1957), 1519。
(4) たとえば新興電気学会に出品されたオーバルベッタおよび
(5) ブーバの内部研削盤は 120,000 rpm。
(6) 今年大阪市立大学のディスティングの平面盤は 120 m/min-
(7) まで可能という。
(8) 機械学会論文, 61, 468(1931-2), 125。
(9) 75, 469 (1931-3), 186。
(10) 468(1931-2), 125。
(11) またレジオフェックスのない装置 KDM-7/50 等。
(12) ブラックヘイト・エジシグ盤。
(13) ガスディングのニューメテロード、今年大阪市立大学のテーブル超精密フライス盤等。
(14) 今年ハノーバーメンツと出品された SIP 社のグリュシャー。
(15) たとえば CWB の機械はシャ。
(16) 今年大阪市立大学のテーブル超精密フライス盤、トヨタ・ジャッードの円筒研削盤等。