Studies on the Characteristics of Radial-Flow Nozzles
(4th Report, Characteristics of Pneumatic Micrometers)

by Tatsuya Hagiwara

Characteristic equations of the low pressure pneumatic micrometers are derived from the results of the theoretical analysis obtained in the 1st and the 2nd report. To prove these equations, experiments are carried out with respect to the characteristics of the outward and inward flows with a single nozzle and the push-pull and V shape characteristics with a combined nozzle. Experimental results show good consistence with theoretical values. The equation for outward flow in a single nozzle is compared with two typical equations of papers published previously, and it is found that the present one gives the values closer to the experimental results than others.

1. 緒言

半径流ノズルの特性について第1報(1)および第2報(2)で理論的解析を行う。第3報(3)で実験によってその結果が実用上十分に満足できることを証明した。
この一連の研究の目的は空気マイクロメータの静特性の計算式を求めることにあるもので、第4報でさらに得られた結果から静特性式を誘導し、実験値と比較する。
いままでに、空気マイクロメータの静特性に関する研究は数多く発表されている。その代表的なものに一つに川崎の研究(4)があるが、これは流体の粘性だけを考慮し、流れは流れて角の流れであるとしている。さらに内部並列の流れを線形とみなした簡単なものである。この結果はきわめて特殊な条件のときだけに適用できるもので一般的でない。ついて石原(5)は流体の速度ヘッドを考慮に入れて特性式を導いた。
この場合、内部並列を流体測定用オリフィス板と同様に取扱ったので、かなり実験に近い値を与えた。この形の特性式を用いた特性値の数はきわめて多い。しかし、この式も流れは初めからポアズィーの流れと考えて導かれている。その後、増岡(6)と上記の特性式の二つの点を改め、一つはノズル周辺から吹き出す流体の速度ヘッドを平均速度から得られる値に54/35をかけたことである。速度分布が放射状である場合には、当然この係数を用いるべきである。他の一つは、この速度分布を得るために必要なエネルギーを導出したものである。そこで採用された係数の2/35という値は、Schlichting(7)が平行板間の二次元流れについて求めた数値であるので、半径流れに関しても適用できるかどうか疑問である。

そのほかには半径流ノズルに着目して得られた特性式は見当らない。N.P.L.から発表された数々の論文(8)は測定ノズルの円筒形の流出面積に流量係数をかけているだけである。流量係数が大きめおよびノズルの内外径比によって変化することは明らかであるので、これを一定として取扱う方法は一般的でない。高圧式、あるいは真空式空気マイクロメータの特性式はこの形を用いたものが多い。

本報ではまず単独半径流ノズル空気マイクロメータの外向き流れ特性を導く。この特性式は一般的な空気マイクロメータ用いられているものであり、従来の特性式と比較検討する。ついて内向き流れ特性を導く。この特性は従来問題にされなかったが、次に述べる二つの特性式を導くために必要である。これによって牧野(9)が発表した複合ノズルをもつブッシュ・ブラン式空気マイクロメータの特性式を導き、この原理はすでにヨハンソン社のデルタメータに用いられているが、実験値と比較された特性式は発表されていない。さらにV形特性をもつ空気マイクロメータの特性式を導く。この特性は振幅測定(10)に応用されるために特性である。
2. 空気マイクロメータの静特性

2.1 単独ノズルの外向き流れ特性

測定ノズルを流れる空気の容積流量を Q, すきまを h, ノズルの内径を $2r_1$ とすると第3報(1)、(2)式によって

$$p = \frac{Q}{2 \pi r_1 h} \left(\frac{r_1}{r_0} \right)^2 (\xi - \Delta \xi) + p_m$$

$$\Delta \xi = \left(\frac{r_1}{r_0} \right)^2 - 1$$

ここで r_0 は空気流の内半径であり、したがってノズル内側の丸みは $r_1 - r_0$ となる。普通使用される測定ノズルの内外径比は大略 2 前後であり、$R = \frac{Qh}{2 \pi r_1 h}$ は 150 以上小さいからノズルの出口で流れはパズィエの流れになっている。内外径比が小さくても内径が大きくなった場合は、R が小さくなるのでパズィエの流れが存在する。内径と同時に内外径比が小さく、内部絞りの穴径が大きくなるとノズル出口では境界層がすきまを満たさない状態になることもあるが、実際にこのような状態はきわめてまれにしか起きない。それで(1)式の ξ は（II）領域に対して与えた理論値を用いる。すなわち第1報(30)式によって

$$\xi = \frac{54}{35 \alpha^2} + \frac{24}{R} \log \alpha + f(w)$$

$$R = \frac{Qh}{2 \pi r_1 h}$$

$f(w)$ は R だけできる値であり、α はノズルの内外径比である。すきま h を無限大にしたときの測圧値の圧力 p_m は一般に

$$p_m = \zeta_1 \frac{4 \mu}{\pi r_1^2} Q + \zeta_2 \left(\frac{Q}{2 \pi r_1 h} \right)^2$$

で表われる。ここで ζ_1 および ζ_2 はノズルの形状および取付方法によってきまる係数である。（1）、（2）および（3）式から p を求めるとき

$$p = \frac{6 \mu}{32 \pi r_1 h} Q + \frac{P}{\pi r_1 h} \times 10^3 BQ^2$$

ここで

$$A = \frac{r_1}{10h} \left(\frac{r_1}{r_0} \right)^2 \left(\frac{r_1}{r_0} \right)^4 \times 10^{-4}$$

$$B = \frac{54}{35 \alpha^2} + f(w)$$

$$+ 4 \left(\zeta_1 - 1 \right) \left(\frac{r_1}{r_0} \right)^4 + 1 \times 10^{-2}$$

一方恒圧そうのゲージ圧力を p_o, 内部絞りの直径を d およびその流量係数を C_f すると

$$p_o - p = \frac{P}{8 \pi r_1 h} \times 10^3 CQ^2$$

$$C = \left(\frac{r_1}{d} \right)^4, \quad d = \sqrt{C_f / 0.8d}$$

ここで d は内部絞りの相対径であって絞りの流量係数を 0.8 に相当させたときの d の換算値である。実用に用いられた 0.5～2.0 mm程度の小孔をのオーダーで高圧水在流 500 mm 以上のときの流量係数はだいたい 0.7～0.9 という値になる。したがって相当径 d は実際の穴径 d とだいたい等しい。4)式と(6)式とから Q を消去すると

$$\frac{p_o - p}{p_o} = \frac{C}{B + C}$$

$$+ \frac{C}{A + G(B + C) - A}$$

$$G = \frac{2 \pi h^2}{72 \mu^2} \times 10^{-4}$$

A と B はノズル部でそれぞれ Q と Q^2 とに比例する圧力損失を表わす無次元量でともに h を含んでいる。C は内部絞りにおける抵抗の係数であって、その値は装置によってきまり h に無関係である。G は初压 p_o, 装置の取付寸法 r_1 および流体の性質を含む無次元量で、水柱 500 mm の空気を用いるならばその値は r_1 だけできる。5)式の ζ_1 および ζ_2 は第3報で用いたようなノズルで普通の取付け方法する近似的に

$$\zeta_1 = 1.00, \quad \zeta_2 = 1.30$$

としてよいことが予備実験の結果からわかった。また(4)式の $f(w)$ の値は第1報で述べたように 10 ≤ $R ≤ 150$ の範囲では 0.130 ± 0.008 となるが、空気マイクロ
ロメータの \(R \) はだいたいこの範囲にあるので計算に当って

\[f(\alpha) = 0.130 \]

が用いられる。\(R \) が小さいときは \(\xi \) が大きいので
0.008 はきわめてわずかな部分になる。また \(R \) が大きくなるとこの省略部分は \(\xi \) の 2 %程度にまでなる
が、このときは \(h \) が大きく、したがって \((p/2) V^2\) が
小さいので圧力としてはきわめて小さい値となる。

2.2 純粋ノズルの内向き流れ特性式

この場合の

圧力損失係数 \(\xi \) は第 2 報で述べたようにノズルの内外径比 \(\alpha \) と \(R \) との組合せによって三つの異なる式で
表わされる。内向き流れの場合はノズルの出口がほど
どく [II] の領域にあって、これが [I] の領域になる
ことはきわめてまれである。しかし内向き流れの
場合は領域が変わることが、それほどまれでないが、ノ
ズルの構造上 \(R \) が一般に小さく、出口が [II] の領域
にあることが比較的多い。

混乱をさけるため \(\xi \) と \(R \) をノズル内径 \(r_1 \) 基準に
統一して、\(\xi \) に対して [II] の領域の式を適用する。

第 2 報 (13) 式より

\[\xi = \frac{54}{S} \log_{10} \frac{\alpha}{\alpha^2} + \frac{f(\alpha)}{\alpha^2} \]

(8)

右辺の最小値は \(R \) と \(\alpha \) との関数であるが、第 1 お
よび第 2 例で比べて小さいので、一般には用いられる
\(\alpha = 1.5 \sim 3.0 \) の範囲に対して近似的に

\[f(\alpha)/\alpha^2 \approx 0.07 \]

(9)

とする。（9）式は \(R \) が小さければ 1 きわめてよい近
似値を与える。

またエネルギー回復 \(\xi' \) の式（第 3 報（4）式）は複
雑なので、取扱いやすい式で近似させる。すなわち

\[\xi' = 0.540 \frac{r_1}{r_0} - 0.780 \]

(10)

\[\xi = \frac{1.750 + 0.909 (\frac{r_1}{r_0})^2}{1.750 + 0.909 (\frac{r_1}{r_0})^2} \]

(11)

を用いねばならない。\(\xi \) は 1.30 とする。
そこで外向き流れの場合と同様の計算を行なうと \(p \)
の式は（7）式と同一になる。すなわち

\[p_0 - p = \frac{C \sqrt{A^2 + G(B+C)} - A}{B+C \sqrt{A^2 + G(B+C) + A}} \]

(12)

\[B = \left(\frac{r_1}{10h} \right)^4 \]

\[= \left(\frac{r_1}{10h} \right)^4 \]

\[\times 10^{-3} + 4 \xi' \frac{r_1}{r_0} \times 10^{-3} \]

\[A, C \] および \(G \) は外向き流れの場合と同じである

(5), (6) および (7) 式。

2.3 複合ノズルのプッシュ・プル特性式

第 1 図

(a) あるいは (c) に示すようなノズルを用いたときす
きまの変化と圧力 \(p \) の関係がプッシュ・プル特性とな
る。上下のすきまの和 \(2H \) は常数によって一定となり、
2H の行程によって \(p \) は \(p_0 \) から完全に 0 まで
変化する。

外向き流れの部分に対しては、測定室の圧力を \(p \)
すると

\[p_0 - p = \frac{6 \mu}{\pi r_1^3} \times 10^{3} A_1 Q + \frac{\rho}{8 \pi r_1^3} \times 10^{3} B_1 Q^2 \]

(13)

ここで \(A_1 B_1 \) は (5) 式と同じである。内向き流れの
部分に対しては

\[p_1 = \frac{6 \mu}{\pi r_1^3} \times 10^{3} A_2 Q + \frac{\rho}{8 \pi r_1^3} \times 10^{3} B_2 Q^2 \]

\[A_2 = \left(\frac{r_1}{10h} \right)^4 \]

\[B_2 = \left(\frac{r_1}{10h} \right)^4 \]

\[\times 10^{-3} \]

(14)

\[h + h' = 2H \]

(一定)

第 1 図

(a) (b) (c)

* 内向き流れの場合、外部に影響があるのはだいたい外径基準で \(R < 3 \) の範囲である。
ここでは代表寸法に \(r_1 \) を選び内向き流れ部のノズル寸法には \(r \) を用いた。内部流体では（6）式が成立するので、（13）および（14）式から、

\[
\frac{p_1}{p_0} = \frac{B_1}{B_1 + B_2 + C} \left[\frac{2[A_2(B_1 + C)/B_2 - A_1]}{\sqrt{(A_1 + A_2)^2 + G(B_1 + B_2 + C) + (A_1 + A_2)}} \right]
\]

をうる。\(G \) は（7）式に示されているとおりである。

この特性は \(p_1 \) 側部の上流の抵抗と下流の抵抗を考慮して変化することから生じるので、内部流体を設けてもよくないことになる。このときは \(d_m \) が無限大となるので（15）式で \(C = 0 \) とおけばよい。

2-4 複数ノズルの V 形特性式

第 1 図（b）あるいは（c）に対し示すノズルで圧力 \(p \) に着目すると V 形特性曲線が得られる。上あるいは下のすきまが 0 のとき圧力 \(p \) は \(p_0 \) になり、その中間に最低圧力がある。

（13），（14）式から \(p_0 \) を消去し、さらに（6）式によって \(Q \) を消去する。上下のすきまの和を 2 \(H \) とし、上のすきまを \(h = H(1 + x) \)、下のすきまを \(h' = H(1 - x) \) とおくと

\[
\frac{p_0}{p} = \frac{C}{B + C} \left[\sqrt{A^2 + G(B + C) - A} \right] \\
A = \left(\frac{r_1}{10H} \right)^2 \left(\frac{a_1}{1 + a_2} \right)^2 + \frac{a_3}{1 - a_2} \frac{a_4}{1 - a_2} + a_5 \\
B = \left(\frac{r_1}{10H} \right)^2 \left(\frac{b_1}{1 + b_2} \right)^2 + \frac{b_3}{1 + b_2} \frac{b_4}{1 - b_2} + b_5 \\
C = \left(\frac{r_1}{10H} \right)^4 \\
G = \frac{720p_0^2}{\nu^2P} \times 10^{-4}
\]

ここで

\[
a_1 = \log \alpha, \quad a_2 = \log \alpha' \\
a_3 = \frac{1}{3} \zeta_1, \quad a_4 = \frac{2}{3} \zeta_2, \quad a_5 = \frac{1}{2} \zeta_3 \\
b_1 = \frac{1}{2} \zeta_1, \quad b_2 = \frac{1}{2} \zeta_2, \quad b_3 = \frac{1}{2} \zeta_3
\]

式中 \(\zeta_1 = 1.00, \quad \zeta_2 = 1.30 \) が用いられる。

以上の計算式で外向き流れの場合には \(f(r) = 0.130 \)とし、内向き流れの場合は \(\xi \) を（9）および（10）式で近似的に与えている。それゆえ \(\xi \) の真の値と近似値との差異によって生ずる \(p \) の補正を考えなければならないが、外向き流れではこの値はかわめてわずかである。内向き流れでも流量のときに多い場合を除けば補正は小さい。また空気マイクロメータに用いられるような小孔径の絞りでは低流量のときに流量係数 \(C_f \) が一定の値に保たれにくいため補正が必要となることがあるが、一般には特性に無関係な範囲のことをほとんど無視してよいだろう。（3）式中の \(\zeta_1 \) および \(\zeta_2 \) の値の変動による補正是、\(p_\infty \) が無視できる値なので無視できる。

3. 実験方法および実験結果

3-1 実験方法

低圧式空気マイクロメータを対象としたため恒圧そうのゲージ圧力を水柱 500 mm とした。すきまは 1 \(\mu \) キログラムヘッドによって変化させた。圧力は水柱マノメータで測定した。内向き流れ特性を求めるために第 1 図（a）のノズルを、プッシュ・プルおよび V 形特性に対しては（b）のノズルを用い（c）のノズルを用いない。（b）のノズルはすきまの平行をなすことと 0 ぎすみにかわり苦心したが電磁接点と繊維計を用いて測定できる装置ができなかった。内部流体の \(d_m \) は 0.52 mm から 2.04 mm のものが入 \(5 \) 個のようにも用い、もちろん流量係数はおおおの別個の値であるが、それぞれの値はかわめて流量の少ない範囲を除けばほとんど一定であった。ノズルは第 3 輪で用いたものを全部つかったが内向き流れノズルでは PL 1 だけである。

3-2 単独ノズル外向き流れの実験結果

第 2 図は内角丸みの効果の一例である。8/8 ノズルは内角に丸みをつけない場合であるが、\(h \) が大きくなると \(R \) が大きくなると実験値は計算値（実験）から離れていく。これは第 3 輪で述べた錯誤が原因である。この効果の現われははっきり \(R \) の値が 30 〜 35 で解釈の結果と一致している。ところが内角に丸みをつけたノズルと計算値と
よく一致する。図に 0.84mm の丸みをもつ 8/3 のノズルの実験結果を示す。丸みをつけたと常温が改善されるほか、特性をあらかじめ計算できるという利点がある。内角に丸みのあるノズルを用い、小さい間はきわめてよく計算と実験が一致した。しかし、d_e が 2mm 以上となり、かつ h の大きい範囲では多少の差が生じた。実際には感度が低下するので d_e が 2mm もある内部管を用いることはきわめてまれである。この場合、d_e = 0.52 で最大感度が 11550 倍であるのに対して d_e = 2.04mm では、これが 2770 倍となる。しかし、このような極端な例に対しても測定範囲**については（7）式が適用できることがわかった（第 3 図参照）。

3-3 従来の特性式との比較 従来発表された静特性理論式の代表として次の式を選んで本報の結果と比較する。内部管流に関しては、それらはいずれも（6）式と同じ式を用いているが、測定ノズル部についてはそれぞれ異った式となっている。

\[p = \frac{6\mu Q}{\eta h^3} \log \alpha + \frac{d}{2} \left(\frac{Q}{2\pi h} \right)^2 \frac{1}{\alpha^2} \] \((I) \)

\[p = \frac{6\mu Q}{\eta h^3} \log \alpha + \frac{d}{2} \left(\frac{Q}{2\pi h} \right)^2 \left(\frac{54}{35} \alpha^2 + 2 \right) \] \((II) \)

(I) 式は石原、(II) 式は松村の表したものです。この 3 者の相違を主として測定ノズル部で Q^2 に比例する圧力損失、いわゆる流れ (5) 式の B の値の差にある。A^2 < (B+C) として近似的にその効果を求めると

\[\frac{dp}{\rho_0} = \frac{C/B}{(1+C/B)^2} dB \] \((18) \)

となる。一般に C/B > 1 であるから d_B が一定ならば、C が大きいほど、いわゆる d_e が小さいほど d_B は小さくなる。

\[\alpha = 2.72, \ r_1 = 1.84 \text{mm} \] および丸み 0.30mm の PU2 ノズルを用いたときの計算値と実験値を第 3 図に示す。d_e が 1.01mm のときは 3 者の結果に大きな差がいらないが h が大きくなると多少の差が認められる。実験値は h の広い範囲にわたりて常に本報の特性式と一致している。d_e < 1.0mm ならば測定範囲を問題にするかぎり (I) あるいは (II) 式を用いても差しきれない。

d_e が大きくなると (18) 式が示すように 3 者の理論値の差はかなり大きくなるが、本報の特性式が実験結果に最も近い値を与えていることがわかる。それでも h の大きいところで若干の差が生じる。このような場合 (I), (II) 式ではわれなく（7）式の適用も測定範囲を検討するだけにかぎるべきであろう。

3-4 単独ノズル内向き流れの実験結果 \[\alpha = 1.63, \ r_1 = 3.38 \text{mm} \] および丸み 0.33mm の PL1 ノズルの実験結果を第 4 図に示す。外向き流れの場合と同様、d_e が小さい間は実験値と計算値とはよく一致するが、d_e が大きくなると h が大きくなると同様の問題が生ずる。このことは、(12) 式の B の項にみられたもの以外の抵抗の要素がみられたことから考えている。この場合も d_e が 2mm までなれば測定範囲内の特性の検討には十分適用できることが明らかである。

* すき間の浸食に対する水桝マノメーター水位の変化の比。

** 特性曲線がほぼ直線とみなされる最大感度点近辺の範囲をいう。
の場合であるが、実験値と計算値はきわめてよく一致している。H がこの程度であると、d_s が小さい間は d_s によって性能が著しく変ると d_s が大きくなるとその影響はなくなる。d_s が 1 mm 以下だと単独ノズルの特性（図中破線は PL1 の特性を示す）とたいしてちがいない。d_s が 2 mm 近くになると両者の特性に著しい差が認められる。最大感度は、d_s が小さいほど大きくなることは単独ノズルの場合と同様であるが、d_s が大きくなると感度は小さくなるが、ある値以上になると再び大きくなる (第 1 表参照)。それで内部数をはずした場合の特性が問題となる。この場合は感度がかなり大きいにもかかわらず測定範囲が大きくかつ最大感度点のすきまが大きい、とくに後者の特性は実用上きわめて重要な利点である。

d_s を一定にして H をしてノズルを大すけると感度は小さくなるが、測定範囲は単独ノズルの場合より大きくなる。

3-5 ブッシュ・プル特性の実験結果

ノズル PU1-PL1 の組合せで d_s の 5 種、$H = 0.096 \sim 0.221$ mm の 4 種について実験を行なった。第 5 図は $H = 0.116$ mm

第 1 表 ブッシュ・プル特性 (PU1-PL1, $p_0 = 500$ mmAq)

<table>
<thead>
<tr>
<th>d_s (mm)</th>
<th>0.52</th>
<th>1.01</th>
<th>1.75</th>
<th>2.04</th>
<th>\infty</th>
</tr>
</thead>
<tbody>
<tr>
<td>最大感度</td>
<td>14.8</td>
<td>7.30</td>
<td>5.16</td>
<td>4.78</td>
<td>5.50</td>
</tr>
</tbody>
</table>

第 4 図

第 5 図

第 6 図

第 7 図
半径流ノズルに関する研究 (第4報)

第6図は \(H=0.096 \) mmの場合、第7図は \(H=0.160 \) mmの場合である。\(p \)の極小値は一般に \(d H=0 \)の点にはない。これは上下のノズルの特性が異なるためである。（5）式と（14）式の \(B \)を \(h \)の同じ関数にすることができないので曲線を理論的に対応形にすることが難しい。しかし \(h \)と \(d \)との組合せによって \(p \)の極小が \(d H=0 \)の点にもたらすことは可能である。本実験に用いたノズルの組合せは比較的対応形に近い特性を与えていて、\(p \)を極小にする \(d H \)の値は \(d \)の広い範囲に対して \(H \)の \(\pm 5 \% \)以内にある。

\(d \)の値によって特性曲線の形は著しく変化する。\(H \)が小さいときは \(d \)が小さいほど \(V \)形の先端が鋭くなるが、\(d \)が小さくて \(H \)が大きくなると先端が平らになり \(U \)形になる。それ故に振動測定に用いる場合は \(d \)は \(H \)の値によって適当にきめなければならないことがわかる。

実験の結果は計算値とよく一致している。\(H=0.221 \) mm、\(d=2.04 \) mmの場合は流量がきわめて大きくさらでも両者の差は \(5 \) mm \(Aq \)以内である。

4. 結言

第1、2報で求めた半径流ノズルの理論式から低圧空気マイクロメータの静特性を説明し実験結果と比較したところ、次のような点が明らかにされた。

1. 単独ノズル外向き流れの場合の特性式は実験結果ときわめてよく一致する。ただ普通使用されないようなときに洞係数の大小の内側断を用いたときは若干の差が生じたが、それでも測定範囲の特性の検討を行うためにはさしつかえない。圧力の補正是ほとんど問題にならない。

2. 従来発表された特性式よりさらに近似を与える。とに \(H \)の大きい場合、絞りの穴径の大きい場合にも適用できることを著しい違いである。

3. 単独ノズル内向き流れの場合も外向き流れの場合と同様きわめてよい結果が得られた。ただこの場合は圧力補正を無視してはならない。

4. 複合ノズルのプッシュ・プル特性は内部絞りを除いた場合にその特長があらわれる。この点に関して今後十分な検討が望ましいが、そのためには本報の特性式が役立つ。

5. 複合ノズルの \(V \)形特性は空気圧測定計の基礎となるものであるが、ここで導かれた特性式を用いれば十分な検討が可能であることがわかった。

このように本報で導かれたすべての特性式は、実験結果によって、広い範囲において適用できることが明らかになった。したがって第3報の結果と相まって第1、2報で求められた理論式が実用上成立することを実証した。

緒に本研究に際して数々の御教示を賜った東京工業大学本木哲史、谷口修教授ならびに実験および結果の整理に始終協力下さった上村正治氏に心から感謝の意を表する。

文 献

(1) 尾久，本論文集 118 ページ。
(2) 尾久，本論文集 145 ページ。
(3) 尾久，本論文集 150 ページ。
(4) ウォス，精密機械，11-2 (昭和26-2)。
(5) 田中，精密機械，11-10 (昭和26-10)。
(6) 植原，機械学会講演集，17-56 (昭和26)。
(7) Goldstein, Modern Developments in Fluid Dynamics, 1 (1952), 29, Oxford Press。
(8) たとえば J.C. Evans & I.G. Morgan, Machinery (London), 87 (1955), 867。
(9) 柴野，機械試験所報告，8-4 (昭和29-7)，145。
(10) 柴野，計測，5-5 (昭和20-9)，222。

地熱発電調査5箇年計画

産業省所管の地質調査所では地熱発電実用化のための基礎データを得ることを目的として昭和29年度の地熱開発調査を実施しているが、このほどさらに5箇年計画で松山地区、岩手地区、宮城県における深部の地熱の調査研究のほか、新しい形式として北海道の昭和新山および阿蘇山周辺の地質学的研究調査研究に着手することになった。なお、地質調査所のこれまでの調査によると松山地区では120m以下に主に昭和30年度の地層の発見がある。天然ガスの存在は確認され、天然ガスの存在状態および地層構造との関係を知る上で重要な手掛りを得ている。さらに掘さく時における孔底温度の測定結果によって120～160m以下では温度が急激に上昇する。そして、電気探査と地質探査を行なって昭和35年度に325m、450mのポーリングを行なった結果、予想どおりの噴気をみた。つまり、これらの調査から地熱探査技術の確立がいよいよ近く見えてきたもので、今後新形式の地熱開発地帯である昭和新山および阿蘇山周辺の地熱開発に大きな期待がかけられているわけである。なお、松山松山地区の地下構造調査の結果は900～2000m付近に山脈地層が確認される砂岩、頁岩、凝灰岩の存在する地層があることも確認されているので、今後松山地区が地熱開発を進めるに向けかそうか々近く決定されることになっている。

（服部 敏夫）