燃料噴射弁のニードル弁の衝突速度について*

串山 正**，井上 光***，佐藤文人***

1. はじめに

過給度の高い機関に燃料油を使用すると、短時間のうちに噴射弁の噴口に「すな」が詰まり、ニードル弁部の油密度が低下したりして、燃料が沸騰しリング・ラインの摩耗や他機の事故が発生する。したがって、各社では排出流の冷却、ニードル弁の容量の減少、材質の変更などのいろいろな対策を実施して使用時間の延長をはかっている。

噴射弁ニードル弁の油密度の低下する要因として、ニードル弁が弁座に速い速度で衝突することがある。この衝突速度を下げることを試みた過給機関用噴射弁の研究*もも、ニードル弁の衝突速度自体について取り扱ってないようである、ニードル弁の動きを噴射弁の上部に取出して計測すると、開閉弁に不可解な逆の現象が観られる。そこで直接ニードル弁の運動が計測できるような特殊噴射弁を製作、ニードル弁の揚程、ニードル弁部油圧を計測し、あわせて、ニードル弁の運動について理論的な考察を行なうニードル弁の衝突速度を求めめた。

2. 試験装置とその方法

特殊噴射弁　ニードル弁自体の運動および弁座まわりの油だまりの油圧が計測できるように図1の特殊燃料噴射弁を製作。

図1において、調整弁し、弁座、弁受下金、押し棒、ニードル弁およびノズルチップはすべて実機と同じ寸法とし、ニードル弁自体は運動部分の変位計測しやすい構造とした。

また、押し棒の長さを変えることを考えて弁本体は三つ割構造を採用している。

さらに、ニードル弁案内にニードル弁まわりの油だまりに直接燃料管を取付け、また、油だまりの油圧が直接測れるようにニードル弁案内と噴口とはニードル弁押え金物で下からボルト締めとした。

ニードル弁の制限揚程はニードル弁案内金物と押し棒下部金物下との間に制限板をそう入して変えた、ニードル弁の変間圧力は上部の調整弁でこのばねを押下してハンドルで設定した。

弁の運動部重量は押し棒によって変えた。

実験にあたっては、ニードル弁揚程、油圧、噴射のモーメントなどをつぎの要領で計測した。

ニードル弁揚程の計測　図1のようにニードル弁上部に取付け、ニードル弁案内に軸と垂直な細孔（図中破線）をつけた。穴の端部からの光をニードル弁を取り付けて「縁」で切られ、その光量の変化をフォトトラ

* 昭和41年4月1日第43回通常総会議事録において審査橋艇として提案、原稿受付 昭和40年10月20日。
** 三島、三菱重工業株式会社長崎研究所（長崎市新浦1）。
*** 三菱重工業株式会社長崎研究所。
ジスタで受けて、ニードル弁の変位を計測した。増幅回路は図2のとおりである。

ニードル弁の変位とは、フォトトランスジスタの発生電流変化との関係を図3のとおりであり、本試験で取扱うニードル弁揚程 0〜0.85 mmの範囲では直線的関係があることがわかる。
また、フォトトランスジスタのしきい値波数は約 10 kc/s であり、一方、ニードル弁の開弁期間は (4 〜10) × 10^{-4} 秒であるから十分な測定精度はある。

押し棒の変位は、図1に示すとおり押し棒上部案内金物に細いみぞを刻み、ニードル弁と同様に光量変化で計測した。

ニードル弁まわり油圧油圧計測 図1においてニードル弁座油圧計の燃料管取付け部と対称の方向に細孔をあけ、油圧油油から6 mm離れたところに受圧膜を取付け、その裏面にひずみゲージをはり付けた。

ゲージ自体は 30 kca/s まで計測でき、導圧管を圧力波が往復する時間は 2L/a=0.8×10^{-4} 秒なので、正確に油圧油圧は計測できる。

喷射モーメンタムの計測 噴射モーメンタムはニードル弁の揚程と関係がある。

表 1 実験条件要観表

<table>
<thead>
<tr>
<th>実験</th>
<th>ボンプ: 1W-1850 ボンプ式荷重計</th>
</tr>
</thead>
<tbody>
<tr>
<td>指針</td>
<td>レベル: 25 mm</td>
</tr>
<tr>
<td>噴射管: 3.6mm×0.8mm</td>
<td></td>
</tr>
<tr>
<td>取付弁: ニードル弁: 図1</td>
<td></td>
</tr>
<tr>
<td>噴口: 0.2mm×8 個</td>
<td></td>
</tr>
<tr>
<td>燃料ポンプ駆動用ガム: 図4</td>
<td></td>
</tr>
<tr>
<td>使用燃料油: A級油</td>
<td></td>
</tr>
</tbody>
</table>

実験条件

<table>
<thead>
<tr>
<th>実験</th>
<th>カム転回数: n=300〜500 rpm (50 rpm と 350 rpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ニードル弁の制限揚程: h=0.25〜0.85 mm (0.2 mm と 0.5 mm)</td>
<td></td>
</tr>
<tr>
<td>噴口</td>
<td>オイル圧力: p=200〜300 kg/cm² (50kg/cm² と 300 kg/cm²)</td>
</tr>
<tr>
<td>内容</td>
<td>ばね定数: k=25, 57, 97 kg/mm (4 個)</td>
</tr>
<tr>
<td>容量</td>
<td>ボンプ降圧室: 4250 rpm</td>
</tr>
<tr>
<td>内容</td>
<td>ばね定数: k=25, 57, 97 kg/mm (4 個)</td>
</tr>
<tr>
<td>容量</td>
<td>ボンプ降圧室: 4250 rpm</td>
</tr>
</tbody>
</table>

実験条件: カム転回数 n=450 rpm, オイル圧力 p=300 kg/cm², ボンプ降圧室 W=175 g

图3 ニードル弁揚程の変位量検定曲線

图4 燃料ポンプ駆動ガム特性曲線

图5 押し棒とニードル弁の変位比較
3. 試験結果とその検討

試験結果の代表例は図5から図8のとおりである。

3-1 オシロ写真の観察

3-1-1 ニードル弁の運動について ばね定数を四とおり変えて、押し棒の変位とニードル弁の変位を同時に記録すると図9のとおりである。図10の上側は押し棒、下側はニードル弁の変位である。

表2 長押し棒の感動部分の固有振動数

<table>
<thead>
<tr>
<th>ばね定数 k (kg/mm)</th>
<th>近似値 W (g)</th>
<th>表2 (1/3)Wg (g)</th>
<th>\sqrt{k} (rad/s)</th>
<th>許容振動数 f (c/s)</th>
<th>ばね自体の固有振動数 f (c/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>118</td>
<td>33</td>
<td>1.35×10^3</td>
<td>215</td>
<td>460</td>
</tr>
<tr>
<td>46</td>
<td>118</td>
<td>46</td>
<td>1.88×10^3</td>
<td>251.5</td>
<td>345</td>
</tr>
<tr>
<td>57</td>
<td>118</td>
<td>56</td>
<td>1.79×10^3</td>
<td>285</td>
<td>503</td>
</tr>
<tr>
<td>97</td>
<td>118</td>
<td>74</td>
<td>2.22×10^3</td>
<td>353.2</td>
<td>571</td>
</tr>
</tbody>
</table>

実際の噴射弁では押し棒上部のばね受でニードル弁の動きを測定しており、押し棒よりもさらに精度は良

図6 ニードル弁すわりの油圧変化とニードル弁揚程との関係
くないことが推測される。
なお、各ばねを装着した時の系の固有振動数は表2のように$k=28\text{kg/mm}$の時は215c/s，$k=97\text{kg/mm}$
の時は353c/sである。

ばね自体の固有振動数は最大570c/s（$k=97\text{kg/mm}$
の時）であり、閉弁期間（4～10）×10^{-4}秒よりも長い
周期の振動系であるから、閉弁期間中の現象を押し棒
の変位から考察することは不可能であり、押し棒の飛
上がり現象は押し棒系の振動と考えるのが妥当で
ある。

カム軸の毎分回転数を変えて、ニードル弁の変位と
ニードル弁まわりの油圧を記録した。図6がその結果
である。

同図において，$n=350\text{rpm}$以外の場合は主噴射
の始まる前に、ニードル弁がわずかに動いている。n
$>400\text{rpm}$以外では油圧が上昇してから少し遅れ
て動き始めるが、$n=300\text{rpm}$では油圧が上昇してか
らかなり遅れて動きいている(3)。これは，$n=300\text{rpm}$
では圧力波の第二波で微圧噴射が起こり，$n=400\text{rpm}$
ではこの第二波で主噴射が起こり，$n\geq400\text{rpm}$では
第一波で微圧噴射が発生することを示している。

$n=300\text{rpm}$では、ニードル弁が上限ストッパに当
たっている時にはしばしばニードル弁ストッパに離
れていく。これはニードル弁まわりの油圧が低いため
油圧の微小変化をニードル弁が拾ったためである。し
かし，$n\geq350\text{rpm}$でも，ニードル弁が上限ストッパ
に衝突した直後再びストッパから離れている。これは
油圧変化をあわせ考えて，ニードル弁がストッパに当
tった衝撃により動いたものと考えるべきであろう。

また、ニードル弁が閉じてからも2～3回ニード
ル弁が開いているが，開弁側の圧力と比較すると
閉弁後の油圧は弁の開弁圧力まで上昇しておらず，この
現象はニードル弁が弁座に衝突した時の衝撃によって
噴射弁自体とニードル弁揚程の計測装置の振動がニー
ドル弁の変位に現れたものと思われる。

3・1・2 ニードル弁まわりの油圧変化

図6において，カム軸回転数に関係なく，油圧は時間
の経過とともにだいに高くなっている。
さらにカム軸回転数が高くなると圧力変動
が激しくなっている。これはポンプ駆動カ
ムの速度曲線が直線的に上昇している部分を
使用しているためである。

つきに、ニードル弁は閉弁行程でのい
ってからの油圧の降下状況に注目する。
$n=300\text{rpm}$では，ニードル弁がめまい始
めると油圧の変動は直線的に降下して
いる。$n=500\text{rpm}$では，ニードル弁の動
き始めと同時に圧力降下の速度を急
変する。

閉弁期間の拡大写真(図7)を見ると，ニードル
弁が閉弁運動をしている期間中は，
ほとんど直線的に油圧が降下し，ニードル
弁が弁座に衝突する直前から急に油圧の降
下速度は小さくなり，衝突時にはかなり圧力
が上昇している。この現象は図6の各回
転数の場合にも現われている。

ここで，油圧の降下率がややかになる
のは，ポンプ側から伝わる圧力波に変化
があるのでではなく，ニードル弁が弁座に接
近して噴口部の通過面積が急に小さくなり
管から流入する油が急に阻止されることに
よって動圧が静圧に交換されるためであ
らう。
また、開弁側の拡大幅では、ニードル弁が開き始めるとニードル弁の運動にともなって油圧は一時下降している。また、ニードル弁が上昇ストッパーに着くまでは油圧変化も比較的円滑であるが、ニードル弁が上限ストッパーに着いてからしばらくすると油圧は急激に振動しており、噴射弁自体が大きく振動することを示している。

3-1-3 噴射モーメンタム 噴射弁の重量を長さによって変え、ニードル弁揚程、油圧の変化、噴射モーメンタムを計測した。図8にそれを示す。

噴射モーメンタムはニードル弁が上限ストッパーに当たっている時は、油圧の油圧変化とともに相似している。

押しこ棒の長さが短い時は、長さを長くするとニードル弁の変位と油圧変化から判断してカム軸回転数が多少相違しているようであるが、運動部重量、押しこ棒の長さによっても動的噴射特性にはほとんど差異は認められない。

また、ニードル弁が上昇ストッパーに当たってから、弁座に衝突した直後に、噴射モーメンタムと、油圧に脈振動が認められる。これは、油圧に高次な脈振動が現れたためと考えられるが、ニードル弁が衝突して油圧に脈振動が現れた理由は考えられないので、さきに指摘したように、噴射弁全体、および圧力検出部の脈振動が計測されたものと考えるのが妥当である。これは、開弁時にはニードル弁自体にも異常な脈振動が現れている。

閉弁時の噴射モーメンタムはニードル弁が完全にしまってもまだ多少有限の値を示しており、閉弁側でもニードル弁が開いて少し遅れてモーメンタムが立上がっている。これは、モーメンタムの検出位置が噴口から約2.5mm離れていることによるものである。さらに、噴射始めと終わりの噴出速度を10m/sとすると、噴口を離れて検出部までの遅れtは

$$t = \frac{l}{v} = \frac{2.5 \times 10^{-8}}{10} = 2.5 \times 10^{-9} \text{ 秒}$$

一方、閉弁側の実測値は$t=3.7 \times 10^{-4} \text{ 秒}$、閉弁側は$t=2.5 \times 10^{-4} \text{ 秒}$である。これを1mmにすると、だいたい$1 \times 10^{-4} \text{秒}$の遅れがあることがわかり、噴霧のモーメンタムによって噴霧の閉開期間を定める事は危険であることがわかる。

また、噴霧率も噴口直後で求めたものと、多少の距離をもって取ったものでは多少の誤差が現われることも推定に難しく、すなわち、噴霧モーメンタムは計測した噴霧出口圧力の変化を推定するのに役立つが、さらに立ってこれを解析する場合にはこの点は十分注意する必要がある。

以上、代表的オシロ写真を中心に考察した。

3-2 計測結果の解析 カム軸回転数、啓閉圧力、運動部重量、ニードル弁の制限揚程などの噴射特性に及ぼす影響については、既に発表しているので、ここでは計測精度より、ニードル弁揚程と油圧変化を中心に解析する。

閉弁時の油圧低下dp/dtの解析では、ニードル弁が弁座に衝突する直前の油圧の低下率が急にゆるやかな部分にみられる部分を除いて、直線的に変化する期間のdp/dtを求めた。

3-2-1 カム軸回転数の影響 解析結果を図9に示した。油圧低下率dp/dtはカム軸回転数が多くなるに従って急激に増加している。これを図示グラフに描きかえると図10のとおりであり、いずれのdp/dtの関係にあることがわかる。ただし$n=450〜500 \text{ rpm}$ではばらつきが大きい。

3-2-2 啓閉圧力の影響 啓閉圧力p_oを200〜300\text{ kg/cm}^2の範囲で変えると図10の結果が得られる。

![図9 カム軸回転数n rpm](image)

![図10 噴射特性におよぼすカム軸回転数の影響](image)

![図11 ばね定数k kg/mm, 押し棒長さ](image)
開間圧力が高まるときわずかに油圧下降率が低下するが、油圧の微分値であるから、10％程度のばらつきはやむをえないので、油圧下降率は開間圧力によって変わらないと考えてもよくようである。

3.2.3 ばね定数の影響 ばね定数kを変えると図11に示すとおりであり、k = 28 kg/mmを除いては油圧下降率はほとんど変わらない。k = 28 kg/mmでの油圧下降率は他の比に比べ大きくなっている。

3.2.4 押し棒重量の影響 運動部分の重量を175から132gに変化すると油圧下降率は図11のような結果が得られた。

同図から、運動部分の重量は油圧下降率にはほとんど関係しないようである。

3.2.5 ニードル弁の制限揚程の影響 噴射弁ニードル弁の衝突速度を下げる最も効果的な方法はBICE-RA(1)が採ったようにニードル弁揚程を小さくすることである。しかし、ニードル弁の制限揚程を小さくすると噴射特性が劣化することも考えられるので、まず、油圧、ニードル弁の変位、噴射モーメントなどの変化から考察する。

ニードル弁の制限揚程hを0.25 mmから0.85 mmまで変えると図13のオシロ写真、図14の解析結果が得られる。

図13で、ニードル弁の制限揚程が小さくなると、油圧の変動形態もニードル弁揚程曲線がほとんど変わらない。すなわち、ニードル弁の副振動の大きさに多少の差異が認められるとすぎない。この微小変化はカム転数数が同一でなかったものと推定される。

また、油圧に現われる高次の振動は制限揚程hが大
きくなるにつけて目立って来ることがわかる。
噴射モーメンタムにおいても，通常差はなく，噴射期間中に現われる油圧の大きさは制限揚程 h が小さくなるに従って小さくなる傾向がある。

図 14 において，制限揚程 h を小さくすると油圧降下率は急激に上昇する傾向にあるが，$h=0.45 \sim 0.85$ \text{mm}

の範囲では変わりない。

3-2-6 油圧降下率の考察 以上各変数が油圧降下率と噴射期間に及ぼす影響を見たが，油圧降下率を主としてカム軸回転数の二乗に比例するのみで，他の変数ではほとんど変わらないことが示されている。一方の研究者からポンプ側の油圧降下率は次式で与えられる。

$$p_{1}-p = p_{0} e_{A} r_{A} e_{A}^{A} \left(\frac{v_{N}}{A_{p}} \right)^{\frac{3}{2}} \left(\frac{v_{N}}{v_{N}} \right)^{2} \left(\frac{v_{N}}{v_{N}} \right)^{2} e_{A}^{A} \left(\frac{v_{N}}{v_{N}} \right)^{2}$$

$$= k_{A} e_{A} e_{A} \left(\frac{v_{N}}{v_{N}} \right)^{2} e_{A}^{A} \left(\frac{v_{N}}{v_{N}} \right)^{2}$$

dp/dt を求めると

$$\frac{dp}{dt} = -1.7 \frac{e_{A} e_{A} e_{A}^{A} e_{A}^{A}}{A_{p}} \left(\frac{v_{N}}{v_{N}} \right)^{2} n^{2}$$

となる。

ここで

P : 燃料ポンプ側の設計条件，その他の係数
e_{A} : 噴射強度比$=A_{p}e_{A}A_{p}$
A_{p} : 噴射管断面積

μ_{eA} : 油圧有効面積
A_{p} : 噴射管断面積
a : カム軸回転数
v_{N} : 油中速度
N : 既定軸回転数
θ : カム軸回転角

すなわち，ポンプ側の油圧降下率 dp/dt もカム軸回転数 n の二乗に比例するので，ニードル弁の動きの影響が重合されるといえ喷射弁部の dp/dt が n^{2} に比例することに難解である。

4. ニードル弁の衝突速度について

4-1 ニードル弁運動の理論的考察

開弁行程中ニードル弁まわりの油圧がカム軸回転数の二乗に比例して急激に降下することが実験結果で示されているので，この結果をもとに，ニードル弁の運動を考えてみる。

ニードル弁と弁座とのすきまから高圧の油が漏れるため，この部分の抵抗はないものと考えると，運動部質量 m，ばね定数 K，ニードル弁が制限揚程時のばねの縮みより h，油圧降下率 dp/dt の時変運動方程式はつぎのとおりである。

$$m \frac{d^2h}{dt^2} + kh = A \frac{dp}{dt}$$

ここで

α : 加速度
A : ニードル弁断面積

$t=0$ の時 $h=0$，$dh/dt=0$ の条件下上式を解くと

$$h = \frac{K}{K} \left(\frac{\sin \sqrt{\frac{K}{m}} \cdot \frac{1}{K} }{\sqrt{\frac{K}{m}}} \right)$$

となる。

$\sqrt{\frac{K}{m}}t<1$ の範囲では上式の近似式として

$$h = \frac{1}{6} \left(\frac{\sqrt{\frac{K}{m}} \cdot \frac{1}{K} }{2} \right)$$

$v = \frac{1}{2} \left(\frac{\sqrt{\frac{K}{m}} \cdot \frac{1}{K} }{2} \right)$

したがって，ニードル弁が変位 h_0 まで運動するに要する時間を t_0 とすれば，平均速度 v_m は

$$v_m = \frac{h_0}{t_0}$$

上式から

$$v = 3 \left(\frac{h_0}{h_0} \right)^{\frac{1}{3}}$$

この関係が求まる。なお式 (5) において，

表 3	ニードル弁の理論最大速度の計算表
n	rpm
dp/dt	kg/cm²/s
k	kg/mm
A	m/s
K	cm²

$K = A \frac{dp}{dt}$

実験条件：

<table>
<thead>
<tr>
<th>n (rpm)</th>
<th>300</th>
<th>400</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>dp/dt</td>
<td>28</td>
<td>47</td>
<td>57</td>
</tr>
<tr>
<td>k (kg/mm)</td>
<td>5.9</td>
<td>3.5</td>
<td>2.9</td>
</tr>
<tr>
<td>A (m/s)</td>
<td>2.0</td>
<td>17.3</td>
<td>3.0</td>
</tr>
<tr>
<td>K (cm²)</td>
<td>0.5</td>
<td>0.8</td>
<td>4.78</td>
</tr>
</tbody>
</table>
\[t = \sqrt{\frac{m}{k}} (\pi + 2i\pi) \quad i = 0, 1, 2, \ldots \] (整数)

の時ニードル弁の速度は最大になり。

\[\max {v} = \frac{K}{k} \]

(9)

である。すなわち、油圧の降下速度と弁ばね定数の比によってニードル弁の最大速度を規定できることがわかる。これを具体的に計算すると表3に示す値となる。

さらに、ニードル弁が動き始めて弁座に衝突するまでの時間 \(t \) は、\(t = \sqrt{m/k} \) の場合もあるので、式（4）より \(t \) が大きい範囲まで近似できる式を求めてみる。

式（4）を無次元化すると

\[H = \frac{h}{m \sqrt{k/m}} = \frac{\sqrt{k/m} \cdot t - \sin \left(\sqrt{\frac{k}{m}} \right)}{t} \]

(4')

となり、これを計算すると図15が得られる。これは次式で近似される。

\[\frac{h}{m \sqrt{k/m}} = 0.154 \left(\sqrt{\frac{k}{m}} \right)^{0.94} \]

(10)

式（10）は \(\sqrt{k/m} \) が2の範囲で成立し、その誤差は図15中の表のとおりである。

つきに、式（6）から \(h \) と \(v \) の関係を求め \(Adp/dt = \phi m = K \) の関係を導入すると

\[v = \frac{g^{1/3}}{2} \left(\frac{\phi}{m} \right)^{1/3} \left(nh \right)^{1/3} \]

(11)

同じく式（10）から,

\[v = 2.94 \times (0.154)^{1/2} \times \left(\frac{g}{h_{0.94}} \right)^{1/2} \times \left(g^{2/3} h_{1/3} \right)^{2/3} \]

(12)

が求まる。

すなわち、ニードル弁速度はニードル弁揚程、カム軸回転数、圧力上昇率係数が増せば大きく、運動部重量も増せば小さくなる。また（\(\sqrt{k/m} \) ）が大きい場合には、 バネ定数が大きくなるとかえってニードル弁速度が小さくなる傾向がある。さらに求めた最大ニードル弁速度の値と比べて、 \(h \)

が一定の場合には、ばね定数の効果が異なることは注目値である。

参考までに各変数がニードル弁衝突速度に及ぼす影響を式（12）で求めると表4のとおりである。

4.2 ニードル弁運動の比較検討

ニードル弁が弁座に

\[X = \sqrt{\frac{k}{m}} t \]

\[H = X - \sin X \]

図15

実験条件：カム軸回転数 \(n = 350 \) rpm、ポンプオッシャ \(R_c = 25 \) mm

ニードル弁揚程 \(h = 0.85 \) mm、ばね定数 \(k = 56.9 \) kg/mm

運動部重量 \(W = 175 \) g

図16

表4 ニードル弁衝突速度特性理論計算を

<table>
<thead>
<tr>
<th>(\nu)</th>
<th>(h/2.94)</th>
<th>(h/1.94)</th>
<th>(h/0.94)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>v</td>
<td>h</td>
<td>v</td>
<td>K</td>
<td>v</td>
<td>m</td>
<td>v</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>0.75</td>
<td>0.822</td>
<td>0.75</td>
<td>0.827</td>
<td>0.75</td>
<td>0.806</td>
<td>0.75</td>
<td>1.10</td>
</tr>
<tr>
<td>0.50</td>
<td>0.624</td>
<td>0.50</td>
<td>0.533</td>
<td>0.50</td>
<td>0.790</td>
<td>0.50</td>
<td>1.256</td>
</tr>
<tr>
<td>0.25</td>
<td>0.389</td>
<td>0.25</td>
<td>0.409</td>
<td>0.25</td>
<td>0.624</td>
<td>0.25</td>
<td>1.68</td>
</tr>
<tr>
<td>0.03</td>
<td>0.020</td>
<td>0.03</td>
<td>0.025</td>
<td>0.03</td>
<td>0.055</td>
<td>0.03</td>
<td>2.35</td>
</tr>
</tbody>
</table>

NII-Electronic Library Service
座に衝突する前後の変位を拡大する。図16のとおりである。

すなわち、比較的円滑に閉弁を動かす場合と、瞬間的な振動が現われる場合がある。この瞬間的な振動の周期が2×10^{-4} 秒程度であり、ばねの固有振動数 f_s = 285 c/s よりもはるかに高次の振動である。ニードル弁まわりの油圧変動に基づくものか、計測装置の雑音なのか明らかでない。

図16の拡大写真において、縦軸の長さ（周期1×10^{-4}秒）は比較的正確であるが、縦軸については、基準線と変位の検定が容易でないので測定精度はあまりない。しかし、計測時間が短いので、閉弁期間中の基準線が変わるもののと仮定すれば、理論式を適用してニードル弁の動きを基に推定することはさほど困難ではない。

いま、式（12）によって拡大写真からニードル弁の動きを基に推定し、その点を基準に設定する。この設定方法の上限ストップからの変位と時間の関係を実測値から求めると図17のとおりである。図17では、時間軸（横軸）はニードル弁を閉弁運動を開始して弁座に衝突するまでの時間を100%とし、縦軸もニードル弁の制限値を100%と表現して、ニードル弁開弁を変える場合（a）、カム軸回転数が変わった場合（b）の実測値を描いた。

図17に示されるように、ニードル弁変位の実測値は正確に理論直線に分布することがわかる。

図16の h=500 rpm の場合には、音速値が現れたため理论上から多少離れた実測値を観察される。

なお、図17で縦軸軸とともに示されているのは後述のように衝突速度にかかわりのばらつきが見られ変位時間に同一のような数の直線が現われて見にくいために便宜上採用した手段である。

4-3 ニードル弁の衝突速度について ニードル弁の変位時間曲線から、衝突速度を求める方法として、つぎの三と考えられる。

A）閉弁揚程の拡大写真と理論式からガードル弁揚程を数式化し、これから速度を求める方法。

B）閉弁揚程の拡大写真と揚程の検定写真を用いて、開弁直前の数小時間の平均速度を衝突速度とする方法。

C）図13のニードル弁揚程の写真から閉弁時間を求めて、式（8）を用いて衝突速度を求める方法。

ニードル弁は 0.25〜0.85 mm の距離の間に速度が0から2〜4 m/s まで変化するので、ニードル弁は 0.50 〜100 kg/cm² の油圧を維持する高圧弁であるから正確な速度の測定法はなく、上記3法にはそれぞれ長所短所がある。

A）の方法では、まず閉弁揚程曲線の任意の点を基準に数点の変位と時間を写真から読み取り、式（12）によって閉弁運動の開始点を求めて衝突速度を計算する。

この時、開弁運動の全体が拡大写真としてある場合には良いが、ニードル弁が衝突する部分のみと、変位曲線に瞬間的な変動がある場合には算出した Ak, Ab の精度が良くないようである。また、本計算の前提に断弁期間中の変位の基準線を仮定する必要があるが、計算値が全面的に信頼するのには危険である。

B）の方法では、揚程の検定写真から開弁揚程の拡大写真の変位の絶対量を求め、弁座に衝突する直前の2点の変位と時間隔からニードル弁の衝突速度を求める。この場合には、揚程の検定値をそのまま信用できること、求
めた速度は衝突直前の値であること、など計算値の信頼性はあまりない。

C）の方法では、式（7）の平均速度を導入すると、式（6），（10）から衝突速度を求めまる。しかし、閃射運動の開始点を正確に求めるのは困難であり、この方法で衝突速度を求めることはできないが、

横軸、縦軸の精度は十であり、衝突速度が存在する範囲を規定するにはもっとも適当な方法である。

よって、以下ニードル弁の衝突速度の解析には、A），B）の方法で求めた値の平均値を基準とし、この値をC）の方法でえた値と比較検討した。結果は付表1*のとおりである。

4-3-1 ニードル弁の制限揚程の影響 前にも述べたように、閉弁時の油圧下降率は弁開限力p

ばず定数kではほとんど変わらないことが判明しているので、p

ばずを変えた場合の衝突速度とkを変えた場合の平均値をグラフに描くと図18のとおりであり、

図中に描いた理論式（12）のこう配をよく一致している。わずかに、k=0.65 mmの時の方が低めになっている。

この解析値のばらつきは解析誤差と実験誤差と考えられ、このばらつきを許容する式（12）はいちおう成立するものとしてよい。

以下、各因子の衝突速度に及ぼす影響を考察する際に、解析した衝突速度は式（12）ですべてk=0.85 mmに換算した。

4-3-2 カム軸回転数の影響 ニードル弁の衝突速度をk=0.85 mmに換算してカム軸回転数との関係を求めると図19のとおりであり、多少のばらつきを許せば、式（12）の理論こう配と一致する。特にn=450 rpmの時は各図の場合とても衝突速度が大きいようにある。さきにニードル弁まわりの油圧下降率のところで描かれた図12においても、n=450 rpmの時には油圧下降率が大きかったと関係がありそうなので、念のため、油圧下降率（図12）と衝突速度（図19）の関係を図示すると図21が得られる。

同図では、n=450 rpm時に衝突速度は油圧下降率の大きいことに起因するものであり、実験誤差でないことがわかる。

4-3-3 運動部重量の影響 運動部重量は二とおりで、しか変えていないので、衝突速度の影響を明らかにすることができるが、図20の結果が示すように理論こう配はかなり良く実験値と一致する。

4-3-4 ばら定数の影響 式（12）によると、ばら定数によってずかに衝突速度が変わると、実験値から求めた衝突速度をプロットすると図22のとおりである。

同図によると、k=28kg/mmの場合は特に異常に衝突速度が高い。理論こう配を描いてみると、kによる変化はわずかであり、k=28kg/mm以外はほぼ解析の誤差範囲である。

一方、図11からみてもk=28 kg/mmの時のみ、
油圧降下率の大きいので、油圧降下率を基準にニードル弁衝突速度をプロットすると図21のとおりであり、

\[h = 28 \text{ kg/mm} \]

の値は多量理論的平均曲線より離れすぎている傾向はあるが、ときに異常な点であるとは思われない。解析の精度も良くないのでその原因を明確に推論できるが、ばね定数が小さくなると運動部分の固定振動数が低下するため前記の近似理論式が適用できなくなることも一因であろう。

いずれにしても、ばね定数によって衝突速度は大きく変わらない。燃料噴射弁の耐久性を増すためにばね定数を下げると逆効果になることは注意に値する。

4.3.5 廃棄圧力の影響 廃棄圧力 \(p_o \) を変えた場合の衝突速度の変化は図23のとおりである。平均値の傾向としては、\(p_o \)を高くすると多少衝突速度が大きくなっているが、解析精度の点から見ても開閉圧力によって衝突速度は変化しないとしてよい。

5. 結 論

以上の結果を要約してつきの結論が得られる。

（1）ニードル弁は加速されながらストッパーまたは弁座に衝突し、押し棒で測った結果はかならずしもニードル弁の運動と一致しない。ときに弁ばね定数が小さい時は飛び上がりの傾向が大きく、\(h \)が大きくなってもニードル弁の衝突速度を求めるにはニードル弁自体の運動を計測しなければならない。

（2）ニードル弁弁座まわりの油圧変化とニードル弁の動きを比較して、噴射始めの微少噴射現象とニードル弁が動き始めると油圧が低下する現象が計測できた。

（3）閉弁過程にはいると、油圧はほぼ直線的に低下する傾向があり、ニードル弁が弁座に衝突すると急に油圧が高くなる。

（4）噴射モーメントは弁座中のニードル弁まわりの油圧と相関の変化を示すが、噴射開始後初期を求めるには関数が相当認められ、詳細な噴射現象の解析に利用する場合は十分注意する必要がある。

（5）弁開弁過程の油圧降下率 \(dp/dt \) はカメラ回転数のほぼ二乗に比例し、開弁圧力、ばね定数、弁部の影響、ニードル弁間隔値などにはほとんど関係ない。そして、この関係はポンプ側の油圧降下率の特性と一致する。

図22 ニードル弁衝突速度とばね定数の関係

図23 ニードル弁衝突速度と開閉圧力の関係

（6）本実験の範囲では、ニードル弁間隔値 \(h = 0.25 \sim 0.85 \text{ mm} \) と変化しても噴射特性にはあまり影響がない。

（7）油圧がカメラ回転数の二乗に比例して変化するものと仮定してニードル弁の運動方程式を解くと、実験したニードル弁運動をよく表わしている。

（8）ニードル弁の衝突速度は式(12)で表わせる。

実験結果にもばら同様の成立することを示している。すなわち、ポンプ側の油圧降下率、カメラ回転数、ニードル弁間隔値が増し、ばね定数、弁部重量が小さくなるとニードル弁の衝突速度は大きくなる。そして開弁圧力によってはほとんど変わらない。

文 献

（1）L. Rosenfeld, B.C.E.R.A. Report, No.52/8 (1952-3).

（2）串山, 田部清志, 1-1 (昭30).

（3）串山, 機械学会関西支部第36新定壄論文講演会前報, 第2報 (昭36-3), 49.
燃料噴射弁に関する測定はなかなか困難であるが、特に噴霧用燃料弁を作られている濁度の高い測定を行なわれたことに敬意を表する。

ニードル弁の衝突速度に関しては、ニードル弁および弁座の摩耗に端を発した目標である点を境界弁の閉鎖弁のしごとが長引くという結果から、実際のこの種のニードル弁で許し難しい最大速度あるいは運動量はどの程度をおぼかすか。つまり後者に関しては、衝突速度とその周期であるかは振動数および反発の揚程とはどのような関係にあるか、である。

なお、オシロ写真のスケールをお変えいただき、また $R_c = 25$ では、カム揚程曲線のどのヘンを利用しているか。

（前 藤 盛）

【回答】（1）ニードル弁および弁座の摩耗は、ニードル弁の運動量と弁座の被圧面積との関係を示す現象である。しかし、弁座の摩耗および他にしたがいの実験法は困難だし、実験での偏面も簡単にはきられない。弁座の最大速度と問題ないか、運動量とかた面が問題になるのか、明かでない。

残念ながら、現在のところ、これらの限界許容値があるのかわからない。今後の重要な課題の一つかと思う。

（2）閉弁弁のしごとで、板と盤体の衝突かそのときの反発係数などを対象とする研究は、乏しく、固有振動数とかたの周期とかについては不明である。

したがって、機関の出力増加の方には、現在採用されている値とその平均値を基準に考えておく以外に方法がないと考える。

（3）オシロ写真のうち、揚程については最大揚程が静的に与えられているのでスケールはあるが、それ以外の圧力とかたモーメンタムについては既に定数にわかれない。

また、$R_c = 25$ でポンプはカム揚程 6 mm から 12 mm 付近まで使用している。

【質問】（1）図 5、6 によれば弁閉止後に 0.1 mm 以上に及ぶニードル弁の振動波形がみられる。発表者はこれを喷射弁全体とニードル弁振動の計測装置の振動によるものと述べているが、そうだとすれば弁閉止時にニードル弁が上昇ストロークに衝突した際にも同様の振動が見られるはずである。われわれは弁閉止後のニードル弁振動と燃料の噴射状況をシンクロおよびストロボで同時観測したとき、ニードル弁の微小振動に同期した数次の微弱振動を認めたことがある。したがってここに噴射されている弁閉止後のニードル弁振動は測定値等の振動ではなく、多分に弁全体の振動と考えられる。
定偏差が悪くなったり、フィラメントの切断などの事象が発生する。われわれの研究では毎分回転数 $n=600 \text{ rpm}$ でのフォトランジスタの測定に成功している。

（2）サイクル軸回転数 $n=500 \text{ rpm}$ およびそれ以上の回転数における油圧下降率のばらつきは、本理論式の使用限界を規定する意味で重要であり、今後検討を見て研究する所である。

（3）本実験の結果と噴射期間の関係は付図1のとおりであり、特に 0.25 mm のとき喷射期間が延びている。しかし、この量と小さく、その喷射圧力の変化状況も大差ないところから、(6)の結果を出した。

 NIR ドル弁の油圧特性や喷射特性についての実験結果は、この傾向を示す傾を示している。しかし、これらを考慮に入れば、この傾向が示す傾向を示す傾向を示している。

付表 1 ニードル弁閉弁時速解析表

<table>
<thead>
<tr>
<th>h</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>M</th>
<th>h</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.02</td>
<td>1.03</td>
<td>1.04</td>
<td>1.05</td>
<td>1.02</td>
</tr>
<tr>
<td>0.25</td>
<td>1.11</td>
<td>1.10</td>
<td>1.08</td>
<td>1.09</td>
<td>1.10</td>
<td>1.11</td>
<td>1.12</td>
<td>1.13</td>
<td>1.14</td>
</tr>
<tr>
<td>0.25</td>
<td>1.15</td>
<td>1.17</td>
<td>1.19</td>
<td>1.21</td>
<td>1.23</td>
<td>1.25</td>
<td>1.27</td>
<td>1.29</td>
<td>1.31</td>
</tr>
<tr>
<td>0.25</td>
<td>1.45</td>
<td>1.47</td>
<td>1.49</td>
<td>1.51</td>
<td>1.53</td>
<td>1.55</td>
<td>1.57</td>
<td>1.59</td>
<td>1.61</td>
</tr>
</tbody>
</table>

$h=0.65$

<table>
<thead>
<tr>
<th>$h=0.65$</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>M</th>
<th>$h=0.85$</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.65</td>
<td>1.24</td>
<td>1.25</td>
<td>1.26</td>
<td>1.27</td>
<td>1.28</td>
<td>1.29</td>
<td>1.30</td>
<td>1.31</td>
<td>1.32</td>
</tr>
<tr>
<td>0.65</td>
<td>1.34</td>
<td>1.35</td>
<td>1.36</td>
<td>1.37</td>
<td>1.38</td>
<td>1.39</td>
<td>1.40</td>
<td>1.41</td>
<td>1.42</td>
</tr>
<tr>
<td>0.65</td>
<td>1.25</td>
<td>1.26</td>
<td>1.27</td>
<td>1.28</td>
<td>1.29</td>
<td>1.30</td>
<td>1.31</td>
<td>1.32</td>
<td>1.33</td>
</tr>
<tr>
<td>0.65</td>
<td>1.25</td>
<td>1.26</td>
<td>1.27</td>
<td>1.28</td>
<td>1.29</td>
<td>1.30</td>
<td>1.31</td>
<td>1.32</td>
<td>1.33</td>
</tr>
</tbody>
</table>

$h=0.85$

<table>
<thead>
<tr>
<th>$h=0.85$</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>M</th>
<th>$h=0.85$</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.85</td>
<td>1.79</td>
<td>1.80</td>
<td>1.81</td>
<td>1.82</td>
<td>1.83</td>
<td>1.84</td>
<td>1.85</td>
<td>1.86</td>
<td>1.87</td>
</tr>
<tr>
<td>0.85</td>
<td>1.88</td>
<td>1.89</td>
<td>1.90</td>
<td>1.91</td>
<td>1.92</td>
<td>1.93</td>
<td>1.94</td>
<td>1.95</td>
<td>1.96</td>
</tr>
<tr>
<td>0.85</td>
<td>2.04</td>
<td>2.05</td>
<td>2.06</td>
<td>2.07</td>
<td>2.08</td>
<td>2.09</td>
<td>2.10</td>
<td>2.11</td>
<td>2.12</td>
</tr>
<tr>
<td>0.85</td>
<td>2.13</td>
<td>2.14</td>
<td>2.15</td>
<td>2.16</td>
<td>2.17</td>
<td>2.18</td>
<td>2.19</td>
<td>2.20</td>
<td>2.21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M</th>
<th>S</th>
<th>L</th>
<th>M</th>
<th>S</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.29</td>
<td>1.30</td>
<td>1.31</td>
<td>1.32</td>
<td>1.33</td>
<td>1.34</td>
</tr>
<tr>
<td>1.19</td>
<td>1.20</td>
<td>1.21</td>
<td>1.22</td>
<td>1.23</td>
<td>1.24</td>
</tr>
<tr>
<td>1.18</td>
<td>1.19</td>
<td>1.20</td>
<td>1.21</td>
<td>1.22</td>
<td>1.23</td>
</tr>
<tr>
<td>1.17</td>
<td>1.18</td>
<td>1.19</td>
<td>1.20</td>
<td>1.21</td>
<td>1.22</td>
</tr>
</tbody>
</table>

NII-Electronic Library Service
第10節

燃料噴射弁のニードル弁の衝突速度について

本論文は燃料噴射弁の耐久性に関し、設計上有益な指針を与えるものであり、その成果に対し敬意を表する。

1. 式（12）の使用に関して、影響する因子については詳細に述べられます。

2. 使用される燃料の種類によって变化が見られる。
(10)を微分して、v と h の関係を求めるのが妥当と考える。
\[
\frac{h}{k} = 0.154 \left(\sqrt{\frac{k}{m}} t \right)^{2.94}
\]
t で微分すると,
\[
\frac{v}{m} = 0.154 \times 2.94 \sqrt{\frac{k}{m}} \left(\sqrt{\frac{k}{m}} t \right)^{1.94}
\]
(10) 式に \(h = \frac{k}{k} \) を適用して,
\[
\left(\sqrt{\frac{k}{m}} t \right)^{1.94} = \left(\frac{1}{0.154} \sqrt{\frac{k}{m}} \right)^{2.94} \left(\sqrt{\frac{k}{m}} t \right)^{1.94}
\]
(10) 式に h を適用すると,
\[
v = 2.94 \times 0.154^{1/2.94} \left(\frac{K}{H} \right)^{1/2.94} \left(\frac{m}{h} \right)^{0.97/2.94}
\]
(10) 式に $K = \phi m^2$ なので式 (c) は
\[
v = 2.94 \times 0.154^{1/2.94} \left(\frac{\phi}{m^{1/2.94}} \right)^{1/2.94} \left(\frac{m}{h} \right)^{0.97/2.94}
\]
とする。

（2）式（10）の近似度について

貴観のとおり、式（5）の近似式としては式（10）より式（5）がより正確である。

一方、実際の機関で発生するニードル弁の速度を見ても、速度が増して、逆に増減する $\sqrt{\frac{k}{m}} t$ まで減少しない間に弁座に衝突している事実（実験的）がある。したがって、
\[
\sqrt{\frac{k}{m}} t < \frac{\pi}{2} \leq 1.57
\]
まで近似できれば十分だと考えられる。

そこで、h を変える結果をプロットしてしまうと、従来採用されている弁揚程でもまだv は h の増すにつれて増加しており、$\sqrt{\frac{k}{m}} t \leq 1.0$ 近傍と考えてよいかと考えられる。

また、式（5）が採用すると、式はかなり複雑になること、式を立てた仮定の中に圧力降下が直接的になっている等の思い切った考えを導入していること、正確な計算には藤平氏の指摘された仮次の検証を必要にしたことが考えると、かたずらに式（5）の正確な近似も意味が無いように思えてならない。

（5）本研究で述べた事実は、衝突速度の一次近似を求めることを目的としたものである。精密な計算には系の全体を取扱える電子計算機による方法が適している。

また、この精密に計算に入れる初期値が本研究結果から比較的誤りなく決定できれば所期の目的は達せられたと考える。