1. まえがき

二次元翼列実験によると一般に翼列流入マッハ数が高くならると衝撃波の発生に伴う失速のために損失が激増する。これまではいわゆる遷音速流れ圧縮機に対しては観察的な見方が行われ、ジェットエンジンの高速軽量化の要請に答えるためには一足とびに超音速流れ圧縮機に注意が向けられていた。しかるにNACAにおける研究によれば遷音速流れ圧縮機が予想外に高効率で作動することが判明し、いわゆる遷音速流れ圧縮機への関心が高まってきた。しかしながらその内部流れの詳細に関してはまだ不明な点が多い。その最大の要因は理論解析が困難であること、および二次元翼列実験からの摩擦が大きいかということにある。

二次元翼列と実際の圧縮機翼列におけるこのような圧縮性効果の違いは、むろん流れの三次元性に帰因するのであるが、特に相対流速度マッハ数がスパン方向に沿って不均一であることによるものがあると思われる。このことはすでに著者の遷音速流れ圧縮機の実験(1)および文献で確認されている。このようにいわゆるせん断流れ中の圧縮性効果を調べるには本質的に二次元理論に基づかなければならないものである。

著者はすでに遷音速流れ圧縮機翼列に関する揚力線理論(3)および揚力面理論(4)を展開してきた。その結果運動方程式においては上流マッハ数が1にきわめて近いスパン位置でもその上流圧縮性効果は十分性質的に低音速圧縮性であり、そのマッハ数に対する二次元の理論や実験結果には一致しない。したがって流れの圧縮性効果はスパン方向に平均化されて現われる。そのスパン位置のマッハ数よりもむしろ著者の提案する調和平均マッハ数を主として依拝することなどが明らかにされた。本論文はさらに前報を拡張し、実用的にも重要でありまた学問的にも興味深いものである。さらに変動の検討に関して著者の遷音速流れ圧縮機の単独薄翼の理論解析を行なって遷音速流れ圧縮機流れの理論的予測の手がかりを得ようとするものである。

一般に定常二次元遷音速流れにおいてはらせん理論は適用できない。それはらせん理論ではカく乱が基本流の音速で伝わることが仮定されており、したがって基本流マッハ数が1ならばらせん理論ではカく乱の集積が生じるからである。この難点を避けるためにはカく乱が局所音速で伝わることを、したがって非らせんを考慮しないでなければならない。ところでせん断流れの場合は準安定体流れである。これに対応するには基本流の音速でカく乱が伝わると仮定しても基本流のマッハ数が音速でカく乱に等しい部分はスパン方向の平均にのみ現れるのでカく乱の集積効果は緩和されるからである。したがって本論文の理論は微小カく乱の仮定に基づくらせん理論に基づいている。このようにしてカく乱の仮定は著者の実験結果(1)からも多少とも最大マッハ数1.2くらいまでならばその有用性が期待できる。

遷音速流れ圧縮機の基本微分方程式式本家流が超音速流れの追加で不変であるうえ圧縮性流れの流れ体の無限に仮定する。しかしその解の表現は方程式で定義される。それに対応するために本論文ではすでに前報(3)で遷音速流れ圧縮機の流れを求めることが可能である。中性流の理論をさらに一般化した表現を導いた。さらに微分方程式の推導およびそれを解く場合の条件の処理ををとる最後に二、三の数値計算結果に基づく考察を行なう。

記号

\[a = (\lambda | M \to \infty) d M \to \infty \]

\[B_{\alpha \alpha}(\alpha) = Y_{\alpha}(y; \alpha) \text{ および } Y_{\alpha}(y; \alpha) \text{ による関数展開} \]

\[b(x), b(t; \gamma) \text{ などに分布} \]

\[C_t, C_r \text{ などに圧力係数, 平均流} \]

\[B_{\alpha \alpha}(\gamma) = C_p \frac{1}{4} y^2 \]

\[D_{\alpha \alpha}, D_{\alpha \alpha} \text{ などに分布} \]

\[F_{\alpha}(y; \alpha) = C_{\alpha \alpha} \text{ による関数展開} \]

\[F_{\alpha}(\gamma) = D_{\alpha \alpha} \text{ による関数展開} \]

昭和43年4月3日 第45期長崎航空会議で発表

昭和42年10月20日 第45期長崎航空会議で発表

昭和43年4月3日 第45期長崎航空会議で発表
(iii) 流れは微小から乱流であり、流れに沿ってエントロピーは一定に保たれる。

無限上流のマッハ数 \(M_{-\infty}(y) \) は無限上流の静圧 \(p_{-\infty} \) および密度 \(\rho_{-\infty} \) を用いて

\[
M_{-\infty}(y) = U(y) / (\kappa \rho_{-\infty} / p_{-\infty}(y))^{1/2} \quad \text{……(1)}
\]

と表される。ところでこの論文は特に音速がせん断流、すなわち \(0 \leq y \leq \lambda \) において音速領域 \(M_{-\infty}(y) < 1 \) と超音速領域 \(M_{-\infty}(y) > 1 \) とが共存しているせん断流を対象としている。したがって実際には衝撃波が存在するが、流れのよく乱れを十分に小さくして衝撃波によるエントロピー変化は高次のごく微小量として無視されている。この仮定が成り立つものとする。したがって以下の議論は (iii) の仮定が成り立つ限りでは、音速がせん断流の流速をも含むものであることを注意すべきである。また \(\alpha \) を無限上流静圧 \(p_{-\infty} \) からのかかる乱流とすると、文書 (2) で求めたように一様な仮定に基づいて線形化した連続、運動および等エントロピー変化の式からかから乱流静圧 \(p_{\infty} \) に対する次の式が得られる。

\[
1 - [M_{-\infty}(y)]^2 \frac{\partial p}{\partial x^2} + \frac{\partial^2 p}{\partial y^2} + \frac{\partial^2 p}{\partial z^2} = 0 \quad \text{……(2)}
\]

式(2)に課すべき境界条件は次のとおりである。まず側面に壁面で平行な流れとなるべきことから \(y = 0 \) および \(\lambda \) で

\[
\frac{\partial p}{\partial y} = 0 \quad \text{…………………………(3)}
\]

次に本論文では揚力の問題に焦点が置かれているので翼厚を無視すると、翼面上での境界条件は仮定(ii)および(iii)に基づいて線形化されて

\[
w(U)_{-\infty} = f(x) \quad (-1/2 \leq x \leq 1/2) \quad \text{……(4)}
\]

と表される。ただし \(w \) は流速の成分、\(f(x) \) は翼の中心そり線の傾斜であることから簡単にするために

2. 仮定と基礎方程式

この論文では平行翼間を流れせるせん断流中に置かれ
た1枚の薄翼のまわりの流れを考える。座標系は図1に
示すようにと、翼弦長を基準に無次元化しておく。
したがって流速幅 \(\lambda \) は翼弦比を表わす。またせん断流
は無限上流において壁に平行で翼幅方向のみの慣性で
ない速度分布 \(U(y) \) をもつものとする。このような流
れに対して次のような仮定を置く。

(i) 流体は非粘性、非熱伝導性の完全ガスである。
(ii) 翼は薄翼であり、また迎え角 \(\alpha \) 、そり \(\varepsilon \) も

小さい。
スパン方向には一定とする．最後に無限遠の条件は
\[z \to \infty \text{ で } \rho \to 0 \](5)
\[z \to \infty \mid \gamma \mid \to 0 \](6)
と表わされる．すなわち音速せん断流においては音速領域 [\(M = \alpha(y) < 1 \)] ではかく乱は上流へも下流へも零に収斂しすつ進む．超音速領域 [\(M = \alpha(y) > 1 \)] では
下流に向かう局所マッハ円の内を伝わる．それと同時に両領域の境界面 [\(M = \alpha(y) = 1 \)] を通じて互いにはり込んでくるかく乱が存在することを考慮せねばならぬ．なお境界条件式(5)、(6)は全領域で超音速あるいは音速せん断流の場合には適用することを注意しておく．なぜならば音速せん断流では式(5)の条件を満たす解を選べば自動的に異の上流ではかく乱が零の解が得られ，音速せん断流では式(6)の条件を満たす解を自動的に厳密な解はそれぞれの \(x \to \infty \) で \(\rho \to 0 \) となる解になるからである．

3. 特解とその性質

文献(2),(3)で求めたように分散方程式(2)は次のよう
の特解を有する
\[
p_{\rho} = \int_{0}^{\infty} A_{\rho}(\alpha) e^{i \alpha z} Y_{\rho}(\alpha) \rho \, d \rho \quad \cdots (7)
\]
ただし \(\beta_{\rho}(\alpha) \), \(Y_{\rho}(\alpha) \) (\(n = 0, 1, 2, \cdots \)) は
\[
\frac{d}{dy} \left(\frac{1}{M_{\rho}^{2} d y} \right) Y_{\rho}(\alpha) + \left(\frac{1 - M_{\rho}^{2}}{M_{\rho}^{2} d y} \alpha^{2} + \frac{1}{M_{\rho}^{2} d y} \right) Y_{\rho}(\alpha) = 0
\]
\[
\times 0 \text{ および } \lambda \text{ で } d Y/d y = 0 \]
\[
\cdots (8)
\]
の形をもつ Sturm-Liouville 形境界値問題の解である．

さて \(Y_{\rho}(\alpha) \) は前の章で示したように \(\alpha = 0 \) における解 \(Y_{\rho}(\alpha = 0) \) で級数展開して
\[
Y_{\rho}(\alpha) = \sum_{n=0}^{\infty} B_{\rho,n}(\alpha) Y_{\rho}(\alpha = 0) \cdots (11)
\]
の形で求めることができる．この場合 \(\beta_{\rho}(\alpha)^{2} \) は
ある無限次行列の固有値であり，\(B_{\rho,n}(\alpha) \) (\(m = 0, 1, 2, \cdots \)) はそれぞれ対応する固有ベクトルとなる（前報参照）．またその行列の特性値から
\[
\alpha \to \infty \quad \text{で}
\]
\[
\left(\beta_{\rho}(\alpha)^{2} - q_{\rho}^{2} + O(\alpha^{-2}) \right) B_{\rho,n}(\alpha) \to B_{\rho,n}(\infty) + O(\alpha^{-2}) \quad \cdots (12)
\]
なることがわかる．ここに \(q_{\rho} \) および \(B_{\rho,n}(\infty) \) はと

もにある有限値である．ところで文献(2)で証明したように音速せん断流すなわち \(0 \leq y \leq \lambda \) において
\[M = \alpha(y) < 1 \] の場合には \(0 < \alpha < \infty \) において常に
\(\beta_{\rho}(\alpha)^{2} > 0 \) であり，したがって \(q_{\rho} > 0 \) である．と
こうある音速せん断流なるある値以上の \(\alpha \) で負と
なる \(\beta_{\rho}(\alpha)^{2} \) が現われる．いま無限級数式(11)を
\[n = N-1 \] までの項まで近似し，(12)式を
\[N \leq n \leq N-1 \] では
\[
\beta_{\rho}(\alpha)^{2} > 0 \quad \text{および} \quad 0 < \alpha < \infty
\]
となる．固有値と \(\alpha \) のこのような関係を示すための例
を \(N = 10 \) の場合について図2（音速せん断流）およ
び図3（音速せん断流）に示しておく．
図4 單位ベクトルとαの関係（遠音速せん断波）

図4は図2の場合の固有ベクトル $B_{n, m}(\alpha)$ の変化のようすを示す。なお $\alpha \to 0$ の近傍のようすは文献 (2) に示したように

$$\alpha \to 0 \quad (\beta_\alpha(\alpha) |(\alpha|)$$

$$=1 - M_{\infty} - 1 + O(\alpha^2)$$

$$=O(\alpha^2) \quad ; \quad n=1, 2, \ldots$$

となっている。

さて負の固有値が現われる割合すなわち N' の N に対する割合は超音速領域が大きいほど大きくなる。全領域が超音速領域になると $N'=N$ すなわちすべての固有値が α の大きいところで負になる。全領域が超音速ならばもっとも $N'=0$ である。$(\beta_\alpha(\alpha)^2)$ が負と

$$p = - \frac{8}{2 \pi} \int_0^{\pi/2} \frac{d\xi}{\sqrt{-1 - \xi^2}} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \left[e^{-2\pi n(1 - \rho_\alpha(\alpha))} |F_n(\xi; \alpha)Y_n(y; \alpha)\right. \right.$$

$$\left. \left. \right] \right.$$

と表わされると予想される。ただし $\beta_\alpha(\alpha)$ は $[\beta_\alpha(\alpha)]$ 内の実数部を意味し $\beta_\alpha(\alpha)$ の符号は

$$\beta_\alpha(\alpha) = \left\{ \begin{array}{ll}
0 & \text{if } \beta_\alpha(\alpha) > 0 \\
|\beta_\alpha(\alpha)| & \text{if } \beta_\alpha(\alpha) < 0 \\
\alpha & \text{if } \alpha < 0
\end{array} \right.$$}

となるように選ぶ。この符号の選択は、音速域の変化は無限遠で零に漸近し、音速域の変化は下流に向かってのみ伝わりべきことに対応している。

さて実際に式(18)が求める解であることは次のように証明できる。まず境界条件式(3)を満たすことは $Y_n(y; \alpha)$ が式 (8) および (9) の解であることから明である。また翼面上で揚力面としての圧力分布を有することは式 (16) を考慮すると

$$[p]_{\infty} = \lim_{\gamma \to \infty} \frac{1}{2 \pi} \int_{-\pi/2}^{\pi/2} \frac{d\xi}{\sqrt{-1 - \xi^2}} \cos(\alpha x - \xi \xi) \sum_{n=0}^{\infty} F_n(\xi; \alpha)Y_n(y; \alpha) \alpha \alpha$$

$$= \frac{1}{2 \pi} \int_{-\pi/2}^{\pi/2} \frac{d\xi}{\sqrt{-1 - \xi^2}} \frac{1}{\sqrt{-1 - \xi^2}} \cos(\alpha x - \xi \xi) \alpha \alpha$$

$$= \frac{1}{2 \pi} \int_{-\pi/2}^{\pi/2} \frac{d\xi}{\sqrt{-1 - \xi^2}} \delta(\alpha x - \xi \xi) \alpha \alpha$$

となることによって示される。ここに $\delta(\alpha x - \xi \xi)$ はディラックのデルタ関数である。最後に無限遠の境界条件式 (5), (6) を満たすことを示そう。まず
\begin{align*}
F_{Y_n}(x,y; \alpha) & = F_n(x; \alpha) Y_n(y; \alpha) - F_n(x; \infty) Y_n(y; \infty) \tag{21} \\
\text{なる } F_{Y_n}(x,y; \alpha) \text{ を導入すると式 } (12), (11) \text{ および } (17) \text{ を考慮して} \\
\alpha \to \infty \text{ で } F_{Y_n}(x,y; \alpha) & \sim O(\alpha^{-2}) \tag{22} \\
\text{となることがわかる。ここで式 } (18) \text{ の中のある限界数を } n = N-1 \text{ までに有界数を近似し、さらに } F_n(x; \alpha) \text{ および } Y_n(y; \alpha) \text{ が常に定数であることを考慮すると } p \text{ は次の 3 つに分けて表わすことができる。} \\
p = p^{(1)} + p^{(2)} + p^{(3)} \tag{23}
\end{align*}

ここに
\begin{align*}
p^{(1)} & = - \operatorname{sgn} z \frac{1}{\sqrt{2 \pi}} \int_{-1/2}^{1/2} \frac{d\xi}{\sqrt{\beta_z(\alpha)}} \sum_{n=0}^{N-1} \Re \left[e^{i\alpha (x-\xi) \beta_z(\alpha)} \right] F_{Y_n}(\xi, y; \alpha) d\alpha \\
& = - \operatorname{sgn} z \frac{1}{\sqrt{2 \pi}} \int_{-1/2}^{1/2} \frac{d\xi}{\sqrt{\beta_z(\alpha)}} \sum_{n=0}^{N-1} \Re \left[\int_0^\infty e^{i\alpha (x-\xi) \beta_z(\alpha)} \right] F_{Y_n}(\xi, y; \alpha) d\alpha \tag{24}
\end{align*}

\begin{align*}
p^{(2)} & = - \operatorname{sgn} z \frac{1}{\sqrt{2 \pi}} \int_{-1/2}^{1/2} \frac{d\xi}{\sqrt{\beta_z(\alpha)}} \sum_{n=0}^{N-1} \Re \left[\int_{-1/2}^{1/2} e^{i\alpha (x-\xi) \beta_z(\alpha)} \right] F_n(\xi; \infty) Y_n(y; \infty) d\alpha \\
& = - \operatorname{sgn} z \frac{1}{\sqrt{2 \pi}} \int_{-1/2}^{1/2} \frac{d\xi}{\sqrt{\beta_z(\alpha)}} \sum_{n=0}^{N-1} \Re \left[e^{i\alpha (x-\xi) \beta_z(\alpha)} \right] F_n(\xi; \infty) Y_n(y; \infty) d\alpha \tag{25}
\end{align*}

\begin{align*}
p^{(3)} & = - \operatorname{sgn} z \frac{1}{\sqrt{2 \pi}} \int_{-1/2}^{1/2} \frac{d\xi}{\sqrt{\beta_z(\alpha)}} \sum_{n=0}^{N-1} \Re \left[\int_{-1/2}^{1/2} e^{i\alpha (x-\xi) \beta_z(\alpha)} \right] F_n(\xi; \infty) Y_n(y; \infty) d\alpha \\
& = - \operatorname{sgn} z \frac{1}{\sqrt{2 \pi}} \int_{-1/2}^{1/2} \frac{d\xi}{\sqrt{\beta_z(\alpha)}} \sum_{n=0}^{N-1} \Re \left[e^{i\alpha (x-\xi) \beta_z(\alpha)} \right] d\alpha \tag{26}
\end{align*}

ここで式 (12), (13) および (22) を考慮すると
\begin{align*}
\int_0^\infty |e^{-\beta_z(\alpha)}| \Re F_{Y_n}(x,y; \alpha) d\alpha & < \infty \tag{27}
\end{align*}

および
\begin{align*}
N \leq n \leq N-1 \text{ では} \\
\int_0^\infty e^{-\beta_z(\alpha)} |d\alpha| & < \infty \tag{28}
\end{align*}

となることがわから、したがって Riemann-Lebesgue の定理によって
\begin{align*}
x \to \pm \infty \text{ で } p^{(1)}, p^{(2)} \to 0 \\
(9)
\end{align*}

であることがわから、一方、付録 (1) によれば
\begin{align*}
0 \leq n \leq N-1 \text{ では} \\
\int_0^\infty \Re \left[e^{i\alpha (x-\xi) \beta_z(\alpha)} \right] d\alpha & \to 0; \quad x \to \infty \\
& < \infty; \quad x-\xi > |x| \tag{30}
\end{align*}

であるから
\begin{align*}
x > - \frac{1}{2} \text{ で } |p^{(3)}| < \infty, \\
x \to \infty \text{ で } p^{(3)} & \to 0 \tag{31}
\end{align*}

であることがわから、以上より無限遠の境界条件式 (5) および (6) も満たされていることが示された。

なお、音速せん断流では
\begin{align*}
\Re \left[e^{i\alpha (x-\xi) \beta_z(\alpha)} \right] & = \cos \left[\alpha (x-\xi) \right] e^{-\beta_z(\alpha)} |
\end{align*}

となることから式 (18) が前報 (2)(3) における表現式に帰着することは明らかであり、一方、二次元音速流（\(M = \infty\) または \(M = \text{一定} \)) で
\begin{align*}
2\pi F_0(x; \alpha) = D_0(x), \\
F_n(x; \alpha) = 0 \quad (n=1, 2, \cdots), \\
\beta_0(\alpha) = \text{i} \sqrt{M^2-1} \alpha
\end{align*}

となることから式 (18) は
\begin{align*}
p = - \frac{\operatorname{sgn} x}{2\pi} \int_{-1/2}^{1/2} D_0(\xi) d\xi \int_0^\infty \cos \left[\alpha (x-\xi - |x| \sqrt{M^2-1}) \right] d\alpha \\
& = - \operatorname{sgn} x \left[\frac{1}{2} \int_{-1/2}^{1/2} D_0(\xi) \delta(x-\xi - |x| \sqrt{M^2-1}) d\xi \right. \\
& \left. + \frac{1}{2} \frac{1}{|x| \sqrt{M^2-1}} \delta(x-|x| \sqrt{M^2-1}) \right]
\end{align*}
なる周辺の公式に帰着することを注意しておく。

5. 誘導速度

われわれの目的は図直線条件式（4）を満たすべき $F_n(x; \alpha)$ を定めることにあるので層間にある吹上げ分布 $[\nu/U]_{\infty=0}$ の表現式を求めてはならない。それは $x \to \infty$ で $\nu \to 0$ となるべきことを考慮すれば運動方程式の x 成分の積分によって

$$
\left[\frac{\nu}{U} \right]_{x=0} = \lim_{x \to 0} \left[- \frac{1}{\kappa_p - \omega M \omega} \int_x^{\infty} \frac{\partial p}{\partial x} \, dx \right] \tag{32}
$$

から求められる。この場合式（11）および（17）より得られる

$$
F_n(x; \alpha) = \sum_{m=0}^{\infty} B_{n,m}(\alpha) F_m(x; 0) \tag{33}
$$

なる関係を用い、さらに無限級数は $n=N-1$ までの有限級数で近似すれば付録（II）に示されている手続きの結果、最終的に

$$
\left[\frac{\nu}{U} \right]_{x=0} = - \frac{4\pi}{\kappa_p - \omega M \omega} \int_0^{\frac{x}{\nu}} \sum_{n=0}^{N-1} F_n(x; \xi) \left[\frac{1}{8} \beta_n(0) Y_n(0)(y) + \sum_{m=0}^{N-1} D_{n,m}(x-\xi) Y_n(0)(y) \right] d\xi \tag{34}
$$

と表わされる。ここに

$$
D_{n,m}(x-\xi) = \frac{1}{4\pi} \sum_{k=0}^{N-1} \int_0^{\frac{x}{\nu}} \frac{1}{\xi} \sin (\alpha(x-\xi)) \frac{\beta_k(\alpha)}{\alpha} B_{n,k}(\alpha) B_{m,k}(\alpha) d\alpha
$$

$$
+ \frac{1}{4\pi} \sum_{k=0}^{N-1} \int_0^{\frac{x}{\nu}} \frac{1}{\xi} \sin (\alpha(x-\xi)) \frac{\beta_k(\alpha)}{\alpha} B_{n,k}(\alpha) B_{m,k}(\alpha) d\alpha
$$

$$
+ \frac{1}{4\pi} \sum_{k=0}^{N-1} \int_0^{\frac{x}{\nu}} \frac{1}{\xi} \sin (\alpha(x-\xi)) \frac{\beta_k(\alpha)}{\alpha} B_{n,k}(\alpha) B_{m,k}(\alpha) d\alpha
$$

$$
+ \frac{1}{4\pi} \sum_{k=0}^{N-1} \int_0^{\frac{x}{\nu}} \frac{1}{\xi} \sin (\alpha(x-\xi)) \frac{\beta_k(\alpha)}{\alpha} B_{n,k}(\alpha) B_{m,k}(\alpha) d\alpha
$$

$$
\beta_n(0) \equiv \beta_n(0), \quad Y_n(0)(y) \equiv Y_n(y; 0), \quad F_n(x; 0) \equiv F_n(x; 0) \tag{35}
$$

ここで式（35）のうち右辺第3項に $\delta(x-\xi)$ なる超音速的特異点、第5項に $1/(x-\xi)$ なる亜音速的特異点が含まれており、それ以外に特異点は存在しないことを注意しておく。

6. 積分方程式とその近似解法

式（34）と境界条件式（4）を組合わせると $-1/2 \leq x \leq 1/2$ で

$$
- \frac{4\pi}{\kappa_p - \omega M \omega} \int_0^{\frac{x}{\nu}} \sum_{n=0}^{N-1} F_n(x; \xi) \left[\frac{1}{8} \beta_n(0) Y_n(0)(y) + \sum_{m=0}^{N-1} D_{n,m}(x-\xi) Y_n(0)(y) \right] d\xi = f(x) \tag{37}
$$

なる積分方程式を得るが、上式を満たす $Y_n(0)(y)$ を法負して x につき0から x まで積分すれば

$$
- \frac{4\pi}{\kappa_p - \omega M \omega} \int_0^{\frac{x}{\nu}} \sum_{n=0}^{N-1} F_n(x; \xi) \left[\frac{1}{8} \beta_n(0) \delta_n + D_{n,m}(x-\xi) \right] d\xi = Y_n(0)(f(x)) \tag{38}
$$

（$-1/2 \leq x \leq 1/2$）

となる N 元連立積分方程式に帰着する。

ただし

$$
Y_n(0) = \frac{1}{\lambda_0^2} \int_0^{\lambda_0^2} Y_n(0)(y) \, dy \tag{39}
$$

さらに変数変換

$$
\xi = \frac{1}{2} \cos \theta, \quad \frac{x}{\nu} = \frac{1}{2} \cos \varphi, \quad 0 \leq \varphi, \theta \leq \pi \tag{40}
$$

を行なうと式（38）は

$$
- \frac{4\pi}{\kappa_p - \omega M \omega} \int_0^{\frac{x}{\nu}} \sum_{n=0}^{N-1} F_n(x; \xi) \left[\frac{1}{8} \beta_n(0) \delta_n + D_{n,m}(x-\xi) \right] \frac{1}{2} \sin \varphi d\varphi = \tilde{Y}_n(0) f(\theta) \tag{38}^r
$$

$m=0, 1, 2, \ldots, N-1$ で
なる。ただし

\[F_{x}(\phi, \psi) \equiv F_{x}(\phi, \psi) = \frac{1}{2} \cos \psi \]

\[D_{x}(\theta, \psi) \equiv D_{x}(\theta, \psi) = \frac{1}{2} \cos \theta - \frac{1}{2} \cos \psi \]

\[f^{*}(\theta) \equiv f^{*}(\theta) = \frac{1}{2} \cos \theta \]

である。

さて前報ののように圧音速せん断流の場合には

\[F_{x}(\phi) \text{ と } \tan(\phi/2) \text{ を用いる} \]

として、前報の特異性および後報の Kutta の条件を満たす解を得ることができた。しかし圧音速せん断流の場

合にはその級数展開はむしろ不適当である。なぜなら超音速領域では前後流とともに有限な上下圧力差が存在しうるからである。ところが圧音速流の場合にはその特異点の性質 \((x-\varepsilon)^{-1}\) からわかるように後報において零以外の有限な圧力差は存在しない。これは後報において圧力差は \(O((1/2-x)^{-1})\) で無限大となる項のほかはすべて零となる項によって表わされ、したがって後報において圧力差が有限であることを熱験するので圧音速後報では必然的に圧力差は零となるからである。ゆえにわれわれは後報における圧力差 \(\Delta p_{p}(1/2, y)\) が有限であることをもって圧音速超音速流のすべての場合において一意

な解を得るための必要にして十分な条件とすることができ、また圧音速の特異点の性質から \(\Delta p_{p}(1/2, y)\) が有限ということは

\[\lim_{x \to 1/2} \Delta p_{p}(x, y) (1/2-x)^{1/2} = 0 \]

と同値であることがある。そこで、われわれは

\[F_{x}(\phi) \text{ を未知数とする} \]

で

\[G_{x}(\phi) \equiv G_{x}(\phi) \equiv \frac{1}{2} \sin \phi \]

なる \(G_{x}(\phi)\) を未知数として式 (38) は

\[-4 \pi \prod_{m=0}^{n-1} \sum_{n=0}^{m} G_{x}(\phi) (1/4-z)^{1/2} = \frac{1}{2} \sin \phi \]

と考え代えると、後報の条件として

\[G_{x}(\phi) = 0 \]

を与えればよい。なお二次元圧音速流および二次元超音速流の場合の平板翼においては翼上下圧力差 \(\Delta p_{p}\) は

二次元圧音速流:

\[\Delta p_{p}(1/4-z)^{1/2} = 4 \left(1-z^{2} \right) / \sqrt{1-M_{x}^{2}} \]

二次元超音速流:

\[\Delta p_{p}(1/4-z)^{1/2} = 4 \left(1-z^{2} \right) / \sqrt{M_{x}^{2}-1} \]

と表わされること、すなわち \(\Delta p_{p}(1/4-z)^{1/2}\) は二次元圧音速流では \(x=1/2\) で零となる直線分布をなし、二次元

対応する \(\phi_{m} = 0\) とし、\(G_{x}(\phi)\) と未知数とする \(MN\) 関連一次方程式系に帰着する。

なお前報のと同様に翼面傾斜 \(f(x)\) を迎角成分 \(a_{x}\) とそり成分 \(b_{x}\) とに分けて、それに対応して

\[F_{x}(\phi) = a_{x} F_{x}(\phi) + b_{x} F_{x}(\phi) \]

と表わせば式 (49) は

\[f(x) = a_{x} f(x) + b_{x} f(x) \]

となる。
8. 数値計算例

8.1 計算条件
実際の計算においては $Y_{e_0}^{(0)}$ に関しては20階までとし、また翼弦方向 φ に関しては数値積分は両端を含んで7点の台形公式にしたがった。すなわち式 (49)において $N = 10, M = 6$ である。また式 (49) を満足させるための翼弦上げ代表点 θ_b は $D_{m_{\infty s}}$ 中の特異点の処理を簡単にするために φ に関わる短分の中間点に置いた。

すなわち

$$\varphi_i = \pi - \frac{2\pi}{M}, \theta_i = \varphi_i - \pi(2M)$$

(i = 0, 1, 2, ..., M-1)

である。以上の数値法点数の設定は特に選音速においては精度的に必ずしも十分であるとはいえないと計算時間の短縮上やむを得なかった。

計算例の無限上流マッハ数分布は前報の同様に $M_{\infty}(y) = M_{\infty 0} e^{\nu y}$ とする。この場合の $Y_{e_0}^{(0)}(y)$ および $\beta_0^{(0)}$ などの表現については前報を参照された。

本論文に示す計算例の幾何学的条件は

翼形：平板翼 ($s = 0), \lambda = 2.0$

であり、マッハ数分布は表1に示されている4種類である。

計算は東京大学計算センターの HITAC 5020 E を用いて行った。計算時間は一つの条件につき約10分を要する。

8.2 計算結果

図5～8は4種類のせん断層の代表的スパン位置における翼上下面圧力差分布を示すものでそれぞれ左側に C_p/α_s、右側に C_p^{*}/α_s が示されている。ここに C_p^{*} は

$$C_p^{*} = \frac{4\pi \sum_{n=0}^{\infty} G_{e_0}^{(0)}(x) y_{n+1}^{(0)}(y)}{(k_p - M_{\infty 0})^{n+1}(y)}$$

$$= C_p \left(\frac{1}{4} \frac{1}{z} \right)^{n+1}$$

である。図5は高音速せん断層の場合であるが、すでに前報において計算した同一条件の例と傾向的に全く一致している。これは本論文の計算のいじょうの

<table>
<thead>
<tr>
<th>a</th>
<th>M_0</th>
<th>$M_{\infty s}$</th>
<th>$M_{\infty \infty}$</th>
<th>$M_{\infty \infty \infty}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1.0</td>
<td>0.367</td>
<td>0.555</td>
<td>0.998</td>
</tr>
<tr>
<td>II</td>
<td>1.0</td>
<td>0.442</td>
<td>0.672</td>
<td>1.202</td>
</tr>
<tr>
<td>III</td>
<td>1.0</td>
<td>0.550</td>
<td>0.837</td>
<td>1.495</td>
</tr>
<tr>
<td>IV</td>
<td>1.0</td>
<td>1.000</td>
<td>1.521</td>
<td>2.718</td>
</tr>
</tbody>
</table>
検定ともなるのであが、ともかく全圧が逆遅れ流流中にある限り最大マッハ数 0.998 のスパン位置 \(y/\lambda = 1.0 \) でも圧力分布は二次元逆遅れのあるものと異なり、量的にはもともと異質には二次元逆遅れ的であることを再強調するため理由を掲げた。

図 6 および 7 は逆遅れを断流の場合である。これよりわかるように、逆遅れ速度（\(M_{\infty} < 1 \)）では圧力分布は大きな変形を受けずに二次元逆遅れ的形状を保つ、後続の圧力差も零となっている。図の条件を満たしている。しかしこば逆遅れスパン位置から Kutta の条件が満たされず逆遅れの後継する見られた有限圧力差が生じると同時に表面圧力分布も大きな変形を受けて現れる。これらの分布形が急なまでは逆遅れ側では斜め下流に向かって連なっているのに対し逆遅れ速度において平たくなってしまうようである。これはかく乱は逆遅れ側にはいると上下流全域に伝ばされるので減衰が難しいのに対し、逆遅れ側では上流に向かってゆっくりと伝わるのでできない下流に向かって局所マッハ円すいの形を伝わるためかく乱の集中化が起こるためと思われる。

図 8 は最低上流マッハ数 1 から始まる逆遅れ速度
断流に属するものであるが、まず全圧が逆遅れて
その後の圧力差は有限となることがみられる。第 2 に
\(M_{\infty} = 1 \) に近いスパン位置の圧力分布は翼弦方向の
変化が激しい波形を示し、その原因はあるいは全圧
が大きいスパン位置になるほどその高さあるいは深さ
を挙げつつ下流側に移動し、\(M_{\infty} = 1 \) が約 2 以上のスパン
位置ではほとんど平たくなっ

以上の結果から三つ、一般にマッハ数 1 に近い
逆遅れ側スパン位置に圧力分布の最も著しい変形が現
われ、その部分では二次元流の分布との相対性は見出
せない。それに対して逆遅れ速度スパン位置での変形は
\(M_{\infty} = 1 \) に近い位置でも著しく小さいということが
思いがけない。なお逆遅れ速度位置でも \(M_{\infty} = 1 \) に近い
と下流側の前縁には圧力差が下がる逆遅れの特異性が
みられるが、\(C_{p} \left(1 - \frac{1}{2} \cdot
ight) \) が有限かつ \(\infty \) かつ \(C_{p} \left(1 - \frac{1}{2} \cdot
ight) \)
が有限ならば依存し、したがって計算上の誤差にきわ
めて敏感であるため本計算の精度の段階ではその正否
の断定は結ず難い。
次に図9および10に示されているように局所揚力係数C_iあるいは揚力係数C_iは平均するとM_{∞}が0.8に近いところで最大となり、超音速せん断流になると減少する。また一般に超音速せん断流ではM_{∞}が大きいほど局所揚力は減少する。その結果図11および12にみられるように、無限遠流随伴流上に誘導速度のスパン方向分布が超音速せん断流の場合のそれに対して逆符号になる。随伴流上面上の誘導速度の分布が示す最も著しい特徴は、超音速せん断流ではスパン方向の変動が激しいこと、およびM_{∞}が1のスパン位置に[u_{∞}/U]_{max}の極大値および[v_{∞}/U]_{max}の極小値が現われていることである。それに対応してそのスパン位置でdc_{i}/dyあるいはdc_{i}/dyが小さくなっていることが図9および10から知られる。これはM_{∞}=1のスパン位置で随伴流上ずれの強さが極小値となることを意味している。

9. す び

翼端を過ぎる際音速せん断流の理論解析を行なうため前報(10)で求めた超音速せん断流中の圧力変動を基にするかく乱速度のフーリエ変分表示式をさらに一般化し、超音速、音速および音速せん断流すべてに適用する表示式を導き出した。さらにその結果翼端面上の圧力変動の強さを示す変数を定めるための積分方程式を導き、後述の条件の処理法を述べ、平板翼に関する若干の数値計算例を示した。計算精度が必ずしも満足とは言い難いので計算例の精密な検討を行うには至らなかったが、だいたいにおいて次のようなことがいえる。

一般に後流の上下面圧力差はM_{∞}=1のスパンでは0、M_{∞}が1より大きくなるとスパン位置では有限値となる。

翼端圧力分布はM_{∞}が1に近い超音速側スパン位置で最も変動の著しい波形を示し、その波形は音速側に向かってはずれ下流方向に移動し、音速側に向かってはM_{∞}が1以下の位置になるとたちまちに急激に変化する。したがって音速側スパンにおいてはほとんどM_{∞}=1の位置までは音速側の圧力分布を保つでしょうが、超音速側では音速側スパン位置からかなり遠い位置に至って二次元音速による圧力分布に相似性の分布が現われる。

音速スパン位置において随伴流上ずれの強さは極小値をとる。

超音速せん断流中の局所揚力はM_{∞}が1より大きくなるほど小さい。

以上を要するに音速せん断流において特に音速近傍の低超音速スパン位置の変形特性の解析および予測は完全な三次元流の取扱いに基づかなければならないことがわかる。音速側スパンおよび超音速スパンにおいては強く音速側の影響に二次元流的な圧力分布がみられるのでその部分に関する限りには二次元流からの情報と関連づけた実用的な設計理論をたてることも可能であろう。

さらに計算精度を上げた精密な計算、上記の結果の定性的な考察および実験的裏づけなどは今後の問題として残されている。

最後に、ご指導、ご助言を賜わたった東京大学宇宙航空研究所原田、浦沼、川原、谷田、渋谷、東京大学工学部、岡崎、近藤、松本教授、深川、崎谷、摂津、普右、通通、高田、原田、前野、静岡、松本、内藤、渋谷、原田、浦沼、川原、谷田、渋谷、東京大学工学部、岡崎、近藤、松本教授、深川、崎谷、摂津、普右、通通、高田、原田、浦沼教授に深謝の意を表する。
付録

(1) 積分 $P_n = -\text{sgn} z \int_0^\infty \Re \left[e^{i \alpha x - \beta_n(\alpha) |x|} \right] d\alpha$ の性質

ここで $\beta_n(\alpha) = \Omega_n(\alpha) \sqrt{\frac{\alpha^2 - \alpha_s^2}{\alpha_s^2 - \alpha^2}}$ と定義する。（63）

なる $\Omega_n(\alpha)$ を導入すると、式（12）、（13）および（19）から $\Omega_n(\alpha)$ は

$0 < \alpha < \infty$ で $0 < \Omega_n(\alpha) < \infty$,

$\alpha \to \infty$ で $\Omega_n(\alpha) \sim |q_n| + O(\alpha^{-2})$ （64）

なる性質を有する。ただし $\alpha > \alpha_s$ における $\sqrt{\alpha_s^2 - \alpha^2}$ の値は $\pi/2$ とする。

問題の積分 P_n は次の形で分解することができる。

$$P_n = -\text{sgn} z \int_0^\infty \Re \left[e^{i \alpha x - \beta_n(\alpha) \sqrt{\alpha_s^2 - \alpha^2} |x|} \right] d\alpha = P_n^{(1)} - \text{sgn} z (P_n^{(2)} + P_n^{(3)})$$

ここに

$$P_n^{(1)} = -\text{sgn} z \int_0^{\alpha_n} \Re \left[e^{i \alpha x - |q_n| \sqrt{\alpha_s^2 - \alpha^2} |x|} \right] d\alpha$$

$$P_n^{(2)} = \int_{\alpha_n}^{\infty} \Re \left[e^{i \alpha x - \text{Re}(\Omega_n(\alpha) \sqrt{\alpha_s^2 - \alpha^2} |x|) - \text{Im}(\Omega_n(\alpha) \sqrt{\alpha_s^2 - \alpha^2} |x|)} \right] d\alpha$$

$$P_n^{(3)} = \int_{\alpha_n}^{\infty} \Re \left[e^{i \alpha x - \text{Re}(\Omega_n(\alpha) \sqrt{\alpha_s^2 - \alpha^2} |x|) - \text{Im}(\Omega_n(\alpha) \sqrt{\alpha_s^2 - \alpha^2} |x|)} \right] d\alpha$$

まず $P_n^{(3)}$ に関しては式（67）の被積分関数中の $|\alpha|$ 内は有界であるから簡単に Riemann-Lebesgue の定理が適用でき

$$\lim_{\alpha \to \infty} P_n^{(3)} = 0$$

が成り立ち、一方 $P_n^{(3)}$ は

$$P_n^{(3)} = -2 \int_{\alpha_n}^{\infty} \Re \left[e^{i \alpha x - |q_n| \sqrt{\alpha_s^2 - \alpha^2} |x|} \right] \cos \left[\alpha |x| \left(\frac{\text{Re}(\Omega_n(\alpha) + |q_n| \sqrt{\alpha_s^2 - \alpha^2})}{2} \right) \right] d\alpha$$

$$\times \sin \left[\alpha |x| \left(\frac{|q_n| - \text{Re}(\Omega_n(\alpha)) \sqrt{1 - \frac{\alpha_s^2}{\alpha^2}}}{2} \right) \right] d\alpha$$

$$+ 2 \int_{\alpha_n}^{\infty} \Re \left[e^{i \alpha x - |q_n| \sqrt{\alpha_s^2 - \alpha^2} |x|} \right] \sin \left[\alpha |x| \left(\frac{\text{Re}(\Omega_n(\alpha) + |q_n| \sqrt{\alpha_s^2 - \alpha^2})}{2} \right) \right] d\alpha$$

$$\times \sin \left[\alpha |x| \left(\frac{|q_n| - \text{Re}(\Omega_n(\alpha)) \sqrt{1 - \frac{\alpha_s^2}{\alpha^2}}}{2} \right) \right] d\alpha$$

と変形されるが、式（64）の性質から、$\alpha \to \infty$ で

$$\cos \left[\alpha |x| \left(\frac{\text{Re}(\Omega_n(\alpha) + |q_n| \sqrt{\alpha_s^2 - \alpha^2})}{2} \right) \right] \sim \cos \left[\frac{|x|}{\alpha} \right] \sim 1 + O \left(\frac{\alpha^2}{\alpha_s^2} \right)$$

$$\sin \left[\alpha |x| \left(\frac{\text{Re}(\Omega_n(\alpha) + |q_n| \sqrt{\alpha_s^2 - \alpha^2})}{2} \right) \right] \sim \sin \left[\frac{|x|}{\alpha} \right] \sim O \left(\frac{|x|}{\alpha} \right)$$

$$\sin \left[\alpha |x| \left(\frac{|q_n| - \text{Re}(\Omega_n(\alpha)) \sqrt{1 - \frac{\alpha_s^2}{\alpha^2}}}{2} \right) \right] \sim \sin \left[\frac{|x|}{\alpha} \right] \sim O \left(\frac{|x|}{\alpha} \right)$$

であるから、式（70）の右辺の第 1 の積分にはフーリエの単調関数の定理を、また第 2 の積分には Riemann-Lebesgue の定理が適用でき

$$z - |q_n| |x| \to \pm \infty$$ にて $P_n^{(3)} \to 0$ ができることがわかる。

最後に $P_n^{(1)}$ の性質を調べる。まず次の公式（4）

$$I = \int_{-\infty}^{\infty} e^{i \alpha x - |q_n| \sqrt{\alpha_s^2 - \alpha^2} |x|} \frac{d\alpha}{\sqrt{\alpha^2 - \alpha_s^2}} = \begin{cases} 0: & |x| < |q_n| |x| \\ \frac{2\pi}{i} J_0(\alpha_s \sqrt{x^2 - |q_n|^2}) & |x| > |q_n| |x| \end{cases}$$

ただし

$$\sqrt{\alpha_s^2 - \alpha^2} = \alpha \sqrt{1 - \frac{\alpha_s^2}{\alpha^2}}: \quad |\alpha| > \alpha_s, \quad -i \sqrt{\alpha_s^2 - \alpha^2}: \quad |\alpha| < \alpha_s$$

において I を変形すると

$$I = 2i \int_{\alpha_n}^{\infty} \sin \left[\alpha x - |q_n| \sqrt{\alpha_s^2 - \alpha^2} |x| \right] \sqrt{\alpha_s^2 - \alpha^2} \frac{d\alpha}{\sqrt{\alpha^2 - \alpha_s^2}} + \int_{\alpha_n}^{\infty} \frac{\cos \alpha x \sqrt{\alpha_s^2 - \alpha^2} e^{-|q_n| \sqrt{\alpha_s^2 - \alpha^2} |x|}}{\sqrt{\alpha_s^2 - \alpha^2}} d\alpha$$

となり、したがって
\[
\frac{\partial I}{\partial z} = -2i \text{sgn } z \left[\int_{q_n}^{\infty} \cos \left(\alpha \xi - |q_n| z \right) \frac{1}{\sqrt{\alpha^2 - \alpha_n^2}} d\alpha + \int_{0}^{\infty} \cos \alpha x e^{-|q_n| \sqrt{\alpha^2 - \alpha_n^2}} d\alpha \right]
\]

となる。ゆえに式 (66) と (78) から

\[P_n^{(3)} = \langle \partial I / \partial z \rangle / (2|q_n|) \]

したがって式 (75) から

\[P_n^{(1)} = 0 : \quad x < |q_n| z, \quad \text{および} \quad P_n^{(3)} = \frac{\pi}{|q_n|} \langle \partial I / \partial z \rangle J_0(\alpha_n \sqrt{x^2 - q_n^2 z^2}) : \quad x > |q_n| z \]

が成り立つ。

(II) 式 (34) の誘導

\[I_n^{(1)} = -\text{sgn } z \int_{-\infty}^{\infty} \Re \left[e^{i(x-y) - \beta_n(x) \xi} \right] F Y_n(\xi, y; \alpha) d\alpha \]

\[I_n^{(2)} = -\text{sgn } z \int_{-\infty}^{\infty} \Re \left[e^{i(x-y) - \beta_n(x) \xi} \right] d\alpha \]

とおけば、式 (18) および (32) から

\[\frac{\eta}{|U_j|} = -\frac{1}{\kappa p \omega \alpha_0} \frac{\partial P_n^{(1)}}{\partial z} \int_{-\infty}^{\infty} \sum_{n \neq m} \int_{-\infty}^{\infty} \frac{\partial I_n^{(1)}}{\partial z} d\xi z + P_n(\xi, \infty) Y_n(y; \alpha) \int_{-\infty}^{\infty} \frac{\partial P_n^{(1)}}{\partial z} d\xi z \]

である。さて \(n \in N' \) の成分の演算が前報 (3) の近似チャンネルの場合と同じになるので、ここでは説明を省略する。一方 \(n \subseteq N' - 1 \) では

\[\int_{-\infty}^{\infty} \frac{\partial I_n^{(1)}}{\partial z} d\xi z = \int_{-\infty}^{\infty} \cos \left(\alpha \xi - |q_n| \right) \frac{\partial \beta_n(\alpha)}{\alpha} F Y_n(\xi, y; \alpha) d\alpha \]

\[+ \int_{0}^{\infty} \sin \left(\alpha \xi - |q_n| \right) \frac{\partial \beta_n(\alpha)}{\alpha} F Y_n(\xi, y; \alpha) d\alpha \]

\[= \frac{\pi}{2} \beta_n(0) F Y_n(\xi, y; 0) + \int_{0}^{\infty} \sin \left(\alpha \xi - |q_n| \right) \frac{\partial \beta_n(\alpha)}{\alpha} F Y_n(\xi, y; \alpha) d\alpha \]

\[+ \int_{0}^{\infty} \cos \left(\alpha \xi - |q_n| \right) \frac{\partial \beta_n(\alpha)}{\alpha} F Y_n(\xi, y; \alpha) d\alpha \]

\[\left(\begin{array}{l}
\int_{-\infty}^{\infty} \frac{\partial I_n^{(2)}}{\partial z} d\xi z \n
\int_{-\infty}^{\infty} \sin \left(\alpha \xi - |q_n| \right) \frac{\partial \beta_n(\alpha)}{\alpha} d\alpha \n
\int_{-\infty}^{\infty} \cos \left(\alpha \xi - |q_n| \right) \frac{\partial \beta_n(\alpha)}{\alpha} d\alpha
\end{array} \right) \]

\[= \int_{0}^{\infty} \sin \left(\alpha \xi - |q_n| \right) \frac{\partial \beta_n(\alpha)}{\alpha} d\alpha + \int_{0}^{\infty} \cos \left(\alpha \xi - |q_n| \right) \frac{\partial \beta_n(\alpha)}{\alpha} d\alpha \]

とする。以下の結果に \(n \subseteq N' \) の成分を加え、さらに式 (11), (17) を用いれば最終的に式 (34) の表現式に到達する。

文 献

(1) 阪波・浅沼，機械学会論文集，31-228 論文 40-4，1236。
(2) 阪波・浅沼，機械学会論文集，33-248 論文 42-2，577，585；M. Namba & T. Asanuma，ISAS Report，No.415 (1967)。
(3) 阪波・浅沼，機械学会論文集，34-260 論文 43-4，717。
(4) 大井，弱電防音論とその応用，(昭 32)，296，コロナ社。

討 論

【質問】(1) 遠音速せん断波中の翼特性は非常に興味ある問題と思うが、ただ式 (2) を基礎とする問題へのアプローチには多少の懸念を抱くものである。簡単のために、遠音速せん断波の中に薄いくさび
本稿の論文に関する回答においても述べる。
(2) 压力などのスペック方向分布の精度は各偏差数
$Y_{n}(x)$ による数値解の面積形の形をもって示す
と思われる。付図1のC後の分布の例が示すように
N=10 とN=15との計算の差は $M_{n}-0.1$ が1近いスペック
いずれに仮定される精度があるから本文の計算例に
おける $N=10$ でもいいうる収束はよいと考えられる。
一方の方向の変動の精度は異方に対する沿った偏角を数値
積分に置きかえた際の代表値点の数 M に対して
仮定するはずであるが、M_{n} が1近いスペック位置
に関する限りその C_{n} 分布が最善の形を呈すること
自体すでに計算例での $M=6$ が各スペック位置では不
十分であることを意味し、付図1に示した $M=8$ との
比較からもそれは明らかである。
いずれにしても摩擦スペック方向では摩擦力から離れた
スペック位置に比べて数値計算上の精度は高くなること
は確かであるが、$M_{n}-1$ の付近で C_{n} 分布の物理
が著しくなる理由は少なくとも数値計算精度上の問題
であるといい切れないし、一方その物理的な意味も
今のところ明らかなことではない。
(質問) (1) 論文の結果が実験、または非粘性
完全ガス体の場合のナビエ・ストークスの方程式を
直接数値計算した結果とよく一致するという実際的な
計算は別として、理論的にみて本論文の式(2)は本質的
に $M_{n}-1$ と $M_{n}-1$ の場合であって、次のような
修正は何か。
摩擦速度分布では $\partial \phi_{x} / \partial y$, $\partial \phi_{y} / \partial y$
となるので(付1),
式(2)誘導の過程からみて、$\partial \phi_{x} / \partial y$
の項を生ずる係数
の一次微小量を置き換えて、付文(2)と並行して、
c を摩擦、s を流線方向の長さとすると
連続:
\[(p+\rho_{e}) \frac{\partial u}{\partial x} + \rho_{e} \left(\frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) \]
\[+(U+u) \frac{\partial \phi}{\partial x} + v \frac{d \phi_{z}}{dy} = 0 \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots (1)\]
運動:
\[(p+\rho_{e}) (U+u) \frac{\partial u}{\partial x} + \rho_{e} \frac{DU}{dy} \]
\[+ \frac{\partial p}{\partial x} = 0 \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots (ii)\]
\[\rho_{e} U \frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} = 0 \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots (iii)\]
\[\rho_{e} \frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial z} = 0 \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots (iv)\]
(付1) 高村、高速流力学、(3633), 345, 日刊工業新聞社。
流線に沿って \(\frac{\partial (\rho + p - \omega)}{\partial x} \) を誘導すると、

\[
(U+u) \frac{\partial p}{\partial x} + \frac{\partial \rho}{\partial x} \frac{\partial (\rho + \rho - \omega)}{\partial x} = 0
\]

式 (1)，(v) から \(U + u \approx U \) を利用し、\(\partial \rho/\partial x, \partial \rho - \omega/\partial y \) を除去すると

\[
(U+u)(\rho + \rho - \omega) \frac{\partial u}{\partial x} + \frac{\partial \rho}{\partial y} \frac{\partial w}{\partial x} + \frac{(U+u)^2}{c^2} \frac{\partial p}{\partial x} = 0
\]

ここでは式 (1)，(iii) を用いると

\[
\frac{1}{M \to \infty} \frac{dM \to \infty}{dy} \frac{\partial p}{\partial y} = -\frac{\partial \rho}{\partial x} \left(\frac{\partial}{\partial y} \left(\frac{U+U}{dy} + 1 \right) \frac{dU+U}{dy} \right)
\]

式 (ii)，(iii)，(iv)，(vi) を微分し，(vii) を用いると，式 (2) に相当して

\[
\frac{\partial^2 p}{\partial x^2} - \frac{\partial}{\partial x} \left(\frac{(U+u)^2}{c^2} \frac{\partial p}{\partial y} \right) + \frac{\partial^2 p}{\partial y^2} + \frac{\partial p}{\partial x^2} = 0
\]

さらに \(\gamma \) を比断比

\[U = c \]

とおけば

\[c^2 = c^2 \cdot \left(1 - (\gamma - 1)(\rho - c^2)\right)
\]

式 (viii) は \(x, y, z \) に関する非線形の

\[\frac{\gamma + 1}{c^2} \frac{\partial}{\partial x} \left(\frac{\partial p}{\partial x} \right) + \frac{\partial^2 p}{\partial y^2} + \frac{\partial^2 p}{\partial z^2} = 0
\]

となる。}

（2）1923年4月の「かく乱の発生の象徴…」の式である具体的にはどこに現れているか。}

（3）1932年4月の「かく乱の発生の象徴…」の式である具体的にはどこに現れているか。}

（4）式 (8) はフーリエ変換はどうか。

[回答] (1) 式 (2) が \(M \to \infty > 1, M \to \infty < 1 \) に \(\mu = 1 - M^{-2} \) かもしれなかった。この温度は十数種類の評価によって、適

用範囲はあくまでもかく乱の大きさ、いかければ、迎え角やその大きさ、それを一にとれ \(\mu < 1 \) とされる。}

（2）式 (viii) は \(x, y, z \) に関する非線形の

\[\frac{\partial}{\partial x} \left(\frac{\partial p}{\partial x} \right) + \frac{\partial^2 p}{\partial y^2} + \frac{\partial^2 p}{\partial z^2} = 0
\]

とする。}

（3）式 (xii) の \(M \to \infty = 1 \) と \(\mu = 1 - M^{-2} \) の条件で

\[\frac{\partial}{\partial x} \left(\frac{\partial p}{\partial x} \right) + \frac{\partial^2 p}{\partial y^2} + \frac{\partial^2 p}{\partial z^2} = 0
\]

となる。これにより、

\[\mu = 1 - M^{-2} \]

は式 (3) の条件で \(\mu > 0 \) では原点の場所を特異点とするが、

\[\mu = 0 \] では \(\mu \) のようにする。